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Abstract

The standard transit assignment offered in EMME/2, which is based on optimal
strategies, does not consider congestion effects due to limited vehicle capacity. This

assignment model can be extended by taking into account the vehicle capacity by

means of a volume-dependent transit time function, leading to the formulation of a

transit equilibrium assignment model. In this note, we describe how the standard

version of the EMME/2 Transportation Planning Software can be used to solve
this assignment model. A macro has been written which implements a Frank-Wolfe

descent algorithm, by combining the fixed cost transit assignment module with the

network and matrix calculator modules.

1



Spiess: Transit Equilibrium Assignment Based on Optimal Strategies 2

1 Introduction

In most transit assignment applications, congestion effects due to overcrowding of the
vehicles are not taken into account for modeling of the route choice. This is a reasonable
approach in all those cases where the goal of the planning process is to provide enough
capacity for all transit passenger on the routes of their choice. There are, however, situa-
tions in which it is not feasible to provide enough transit capacity to preclude congestion.
In these cases, the route choice of the transit passenger is likely to be influenced by the
congestion on board the vehicles, so that some travelers will switch from congested to less
congested routes, even if the latter are less attractive in terms of travel time or cost.

In this note, we describe an implementation of an equilibrium transit assignment based
on the concept of optimal strategies. The congestion is modeled by means of volume
dependent cost functions, similar to the volume-delay functions used in the highway equi-
librium assignment. After having presented the mathematical formulation of the model,
we discuss its implementation in EMME/2.

2 Fixed Cost Assignment Model

In this section we briefly describe the fixed cost transit assignment model based on optimal
strategies. For a more detailed description of the model, as well as the proofs, refer to
Spiess (1984) and Spiess and Florian (1989).

For the sake of easier presentation of the mathematical formulation of the model, the
transit network is assumed to be represented by a standard node/link type network, where
a set of nodes i ∈ I is connected by a set of links a = (i, j) ∈ A. The set of links going
out of node i (forward star) is denoted A+

i , and the set of incoming links (backward star)
is denoted A−

i .

A travel time (or cost) ca and a service frequency fa is associated with each network
link a. The demand between nodes i and j is given by gij.

Note that in this type of “exploded” network representation, the itineraries of the
transit lines are implicitly contained in the network topology. The set of nodes not only

contains the physical nodes of the underlying street or rail network, but also one additional
node for each transit stop of each line. Correspondingly, the links are subdivided into
various classes, such as boarding, alighting, in-vehicle and walking links. Note that only
boarding links imply waiting, thus have a finite frequency fa. All other links are served
continuously (fa =∞).

The waiting time at a node depends on the set of attractive links A
+
i ⊆ A+

i , i.e. the
set of outgoing links which are considered for travel by the travelers by boarding the first
vehicle leaving on any of these links. For any given set of attractive links A

+

i at node i,
the combined waiting time is proportional to the combined total frequency of these links
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is
W (A

+

i ) =
α

∑

a∈A
+
i

fa

, α > 0 (1)

and the probability of leaving node i on link a is

Pa(A
+
i ) =

fa
∑

a′∈A
+
i

fa′

, a ∈ A
+
i . (2)

Given the above relations, any strategy for reaching destination r is completely defined
by the corresponding subset of attractive links A ⊆ A.

The optimal strategy for reaching a destination is the one which minimizes the total
expected cost. Note that the cost of a strategy is the sum of link travel times ca weighted
by the probability of traveling on link a, and the waiting time at nodes i weighted by the
probability of traveling through node i. It has been shown that for fixed link travel times
ca, the assigning of the trips from all origins to destination r according to the optimal
strategy corresponds to solving the following linear optimization problem:

Min
∑

a∈A

cava +
∑

i∈I

ωi (3)

subject to
∑

A+
i

va −
∑

A−

i

va = gir, i ∈ I, (4)

va ≤ faωi, a ∈ A+
i , i ∈ I, (5)

va ≥ 0, a ∈ A. (6)

Note that the variables ωi represent the total waiting time (in person minutes) at node i.

The problem (3) can be solved very efficiently by means of the following label-setting
type algorithm:
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Fixed Cost Optimal Strategy Transit Assignment for Trips to Destination r:

Step 0: (Initialization) ui ←∞, i ∈ I −{r}; ur ← 0;
fi ← 0, Vi ← 0, i ∈ I;
S ← A; A← ∅.

Step 1: (Get next link) If S = ∅ then got to step 3,
otherwise find a = (i, j)∈ S with minimum uj + ca;
S ← S − {a}.

Step 2: (Update i-node) If ui ≥ uj + ca then

ui ←
fiui+fa(uj+ca)

fi+fa
,

fi ← fi + fa, A← A + a;
go to step 1.

Step 3: (Loading) Do for every link a ∈ A, in decreasing order of (uj +ca):
if a ∈ A then va←

fa

fi
Vi, Vj ← Vj + va,

otherwise va← 0.

3 Transit Assignment with Non-Linear Cost Func-

tions

We now turn our attention to the the variant of the transit assignment problem in which
the link travel times ca are no longer constants, but are continuous non-decreasing func-
tions of the corresponding link flows ca(va). Such a dependence of the link cost on the

transit volume may represent an actual slowing down of the transit vehicle due to the
number of passengers, but it may also be interpreted as a generalize cost which includes
a “discomfort” term which increases as the vehicles get crowded.

In this context, the transit assignment problem is no longer separable by destination
node, since the linkcosts depend on the total flow of passengers. The total transit volumes
are the sum of the volumes bound for each of the destinations.

As the expected cost of any given strategy is no longer fixed, but depends on the total
volumes, the optimal strategies are now defined by Wardrop’s second principle, which
implies that only strategies with minimal expected cost will be used by the travelers
(Wardrop, 1952). The resulting equilibrium assignment is equivalent to the following
convex minimization problem:

Min
∑

a∈A

∫ va

0
ca(x)dx +

∑

i∈I

∑

r∈R

ωr
i (7)

subject to
va =

∑

r∈R

vr
a, a ∈ A, (8)
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vr
a ≤ faω

r
i , a ∈ A+

i , i ∈ I, r ∈ R, (9)
∑

A+
i

vr
a −

∑

A−

i

vr
a = gir, i ∈ I , r ∈ R, (10)

vr
a ≥ 0, a ∈ A, r ∈ R. (11)

As has been shown by Spiess (1984), the above problem can be solved by applying the
successive linear approximation method (Frank and Wolfe, 1956). An important advan-
tage of this method is the fact that only total volumes need to be computed and stored,
since the destination dependent volumes vr

a are dealt with implicitly. The minimization in

Optimal Strategy Equilibrium Transit Assignment:

Step 0: (Initialization) Find any feasible solution (v0, ω0), where v0 denotes the
vector of total flows va, and the scalar ω0 denotes the
corresponding total waiting time

∑

i∈I

∑

r∈R

ωr
i . k ← 0.

Step 1: (Subproblem) k← k + 1.
Compute (v̂, ω̂) by solving the fixed cost transit as-
signment with costs ca = ca(vk−1

a ) for each destination
r ∈ R.

Step 2: (Line Search) Find λk that minimizes the objective function (7) on the
line segment (1 − λ)(vk−1 , ωk−1) + λ(v̂, ω̂), 0 ≤ λ ≤ 1.

Step 3: (Update) Set (vk, ωk)← (1 − λk)(vk−1, ωk−1) + λk(v̂, ω̂).
If

∑

a∈A

ca(vk−1
a )(vk−1

a − v̂a) + ωk−1 − ω̂ < ε then STOP,

otherwise go to STEP 1.

Step 2 is best implemented not by actual minimization, but by annulling the derivative,
i.e. solving the equation

∑

a∈A

ca(v
k−1
a + λ(v̂a − vk−1

a ))(v̂a − vk−1
a ) + (ω̂ − ωk−1) = 0 (12)

(Here the author wishes to thank Fernando Ramiro from the Catholic University of Rio de Janeiro for pointing out a small error in formulas

(12) and (15) in the initial version of this document.)

Note that the stopping criterion used in Step 3 of the above algorithm corresponds

to the absolute gap, which is an upper bound for the difference between the objective
function at the current solution and at the true optimum.

4 Implementation in EMME/2

In this section we describe how the transit equilibrium assignment can be implemented
in the EMME/2 Transportation Planning Software (Spiess, 1984, and INRO, 1992). An
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important feature of EMME/2 is its modularity. The various functionalities used in the
transportation planning practice are implemented as a set of independent basic tools, all
acting on a common data bank. These can easily be used individuallyor in combination to
form more complex models. A powerful macro language is provided within the EMME/2
system, which allows the user to implement the various steps of the model and to automate
the procedure.

To implement the equilibrium transit assignment discussed in the previous section,
the following basic EMME/2 tools are used:

• Fixed cost transit assignment (Modules 5.11/5.31): This is the standard
EMME/2 transit assignment model. It implements the optimal strategy assignment
described earlier. Of course, in EMME/2 the transit network is expressed by explicit
transit line itineraries, so that the user need not be concerned with the “exploded”
network representation used here for the mathematical formulation of the model.

The travel cost on each transit line segment is given by applying the corresponding
user definable travel time function. The assignment can be finetuned by various
parameters and weights, which are not discussed here.

• Network Calculator (Module 2.41): This is a very general tool to evaluate
algebraic expressions combining any kind of network information. Automatic con-
version between the different element levels (node, link, transit line, transit segment)
is provided.

• Matrix Calculator (Module 3.21): Similar to the Network Calculator, this tool
allows the evaluation of expressions containing any kind of matrix information. Au-
tomatic conversion between the different matrix formats (full matrix, origin vector,
destination vector, scalar value) is provided.

The travel cost function ca(va) is given by a fixed travel time c0
a and a volume dependent

congestion function da(va) in the form

ca(va) = c0
a(1 + da(va)). (13)

The congestion function can be any non-decreasing function with d(0) = 0. It models the
discomfort of traveling on a segment at a volume va. Since the function d(va ) is specified
as a network calculator expression, it can access any other attribute of the transit line
as well, such as: headway, seated and total vehicle capacity, user attributes. By default,
BPR-type and conical congestion functions are provided (Spiess, 1990), but the macro
allows easy integration of other functional forms that might be required for particular
applications.

The fixed travel costs are, as usual, coded directly into the transit time functions.
In order to enable the transit time functions to reflect congestion costs, all transit time
functions have to be multiplied with the term *(1+US1). During the assignment steps,
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the user defined segment attribute US1 will contain the value of the congestion function
da(va ).

In terms of the so defined congestion function d(va), the objective function of the

equilibrium assignment (7) separates in a (linear) travel time part T and a (non-linear)
congestion part

Min
∑

a∈A

c0
ava +

∑

i∈I

∑

r∈R

ωr
i

︸ ︷︷ ︸

total time T

+
∑

a∈A

c0
a

∫ va

0
da(x)dx. (14)

The derivative of the objective function with respect to λ (12), used to compute the
optimal step length λk, is

∑

a∈A

c0
ada(v

k−1
a + λ(v̂a − vk−1

a ))(v̂a − vk−1
a ) + (T̂ − T k−1). (15)

With the above preliminaries, we can now outline the implementation of the EMME/2
equilibrium transit assignment macro CONGTRAS (CONGested TRansit ASsignment):

Step: Description: Module:

1 Initialize congestion costs US1 to 0. 2.41

2 Compute total number of transit trips G =
∑

ij

gij and initialize

iteration counter k← 0.

3.21

3 Perform uncongested fixed cost assignment to obtain v0 and T 0. 5.11/5.31

4 Compute congestion cost D0 =
∑

a∈A

c0
ada(va). 2.41

5 Increment iteration counter k ← k + 1. 3.21

6 Compute new segment congestion costs c0
ada(vk−1

a ) into US1. 2.41
7 Perform fixed cost transit assignment with new congestion costs to

obtain v̂ and T̂ .
5.11/5.31

8 Compute stopping criterion GAP=
∑

a∈A

c0
ada (vk−1

a )(v̂a − vk−1
a ). 2.41

9 Perform line search for obtaining optimal step length λk . This is
implemented using the secant method to annul (15).

2.41

10 Update transit volumes vk = vk−1 + λk(v̂ − vk−1). 2.41 1

11 Update total travel time T k = T k−1 + λk (T̂ − T k−1). 3.21
12 Test normalized gap stopping criterion. If GAP< εG then STOP,

else continue with step 5.
2.41

In its current form, the CONGTRAS macro only considers crowding within the transit
vehicles. But of course, as can be seen from the model formulation in the previous section,
it is also possible to include congestion discomfort outside the transit vehicles, such as

1For technical reasons, this step is implemented in the macro not in module 2.41, but using low level
data manipulations in module 1.11.
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crowding on the platforms and on the pedestrian walk link – as long as the discomfort
function is symmetric (i.e. the same travelers that are causing the congestion are also
suffering the effects of it).

5 Conclusions

We have shown that it is possible to implement a true equilibrium transit assignment
within the framework of the standard EMME/2 system. A variant of the macro outlined
above is being used at London Transport for modeling crowding in the London Under-
ground. Instead of using one of the default congestion functions which are based on
nominal capacity, the macro has been modified for taking into account the actual profile
of train density and passenger load during peak period. The details of this project are
described in Abraham and Kavanagh (1992).

It can be argued with good reason, that the modeling congestion should be done using
asymmetric congestion functions, e.g. as the perceived frequency of a line for a boarding
passenger depending on the number of passengers already on board, or the dwell time of a
line at a node depending on the number of boarding and alighting passengers. While it is
indisputable that such phenomena occur in reality, including them into assignment models
as the one described here unfortunately leads to models with non-unique solutions. Since
the uniqueness of the solution is a primordial requirement for any assignment model, such
asymmetric models, even those for which convergent algorithms are available, are of very
limited practical use.
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