
Enif – Toward a New Interface for EMME/2

Heinz Spiess ∗

October 2000

Abstract

This paper is aimed at presenting a first introduction to Enif, a new software which provides a
modern graphical user interface for accessing existing EMME/2 data banks. Enif is not intended to
replace EMME/2, but to coexist with EMME/2 and complement it. The main goal of the paper is
to discuss the design of Enif and explain the technical concepts on which it is based. These are not
limited to the graphic user interface and the production of high quality graphic output, but go all the
way down to defining new mechanisms how to store and handle network data and how to provide
user configurable objects. In fact, the only thing Enif has in common with EMME/2 is that both can
be used to access the same EMME/2 data banks.

Output examples produced with the current pre-production implementation of Enif are included
in order to illustrate how Enif’s features can be combined in a very flexible way to produce a great
variety of network related graphic output.

Contents:
Introduction . 2
Enif – The Basic Concepts .2
Network and Network Elements . 5
Network Attributes and Attribute Lists . 6
Expressions . 7
Element Selectors and Iterators . 10
The Network Plane . 11
The Stylus . 12
Parameters and Configurable Objects . 14
The Mapper – Doing One Thing at a Time . 15
Combining Mappers to Obtain Plots .20
Lists . 25
Preferences and Initialization File . 27
Implementation .27
Conclusions . 28
References . 28

∗EMME/2 Support Center, Haldenstrasse 16, CH-2558 Aegerten, Switzerland. Email: heinz@spiess.ch

Introduction

This year, it is 20 years that the initial design of EMME/2 was decided upon. Since that time, EMME/2
has continuously been enhanced and improved, adding many new features and modeling capabil-
ities. However, the basic design described in the initial publications on EMME/2 [1, 3] is essentially still
valid today. On the one hand, this proves the importance of building on a solid conceptual base –
without it, EMME/2 would never have gone this far and kept growing all the time. On the other hand,
times have changed a lot since the early eighties, and interactive computing is a totally different
thing today than it was then. While the “age” of the basic concepts behind EMME/2 was never felt
as a hindrance to enhancing the software with new modeling features, the “age” of the graphic
subsystem of EMME/2 is evident, both to the users who have to operate the system, and to us devel-
opers who are seriously limited by the outdated technology assumptions on which EMME/2’s graphic
subset is based.

While it was possible to improve the graphic subsystem of EMME/2 in many ways over the past 20
years, these enhancements had always to be done in a way which did not affect compatibility with
older versions. While this always was (and still is) an important criterion for EMME/2 developments,
over the past years it became clear that the need for a new graphical interface cannot be satisfied
by gradual and upward compatible enhancements of the current EMME/2 system, but that only
a completely new and radically different design would give us the necessary leeway to satisfy the
interactive graphic expectations of the EMME/2 users now and for the years to come.

This cannot and does not mean that the traditional EMME/2 software is to be discontinued and its
functionality replaced by a new and incompatible piece of software. Rather, we foresee both the
traditional EMME/2 and the new software based on the new concepts will have to coexist for quite
some time. This is not only necessary for the continuity of the large existing EMME/2 application base,
but the huge fundus of tools and modeling capabilities that EMME/2 offers is too valuable to just throw
away and start from scratch.

Thus, the project Enif, which is presented for the first time in this paper, is not aimed at replacing
the traditional EMME/2 modules in the foreseeable future. But it is aimed at providing a new way of
interfacing graphically with EMME/2 data within a reasonable short time frame and it is designed to
be solid enough to be able to grow into the future and eventually provide a functionality equivalent
(but not the same!) as does EMME/2 currently.

In this paper the concepts behind Enif are explained and they are illustrated using examples from the
current implementation, which can be used to produce graphic and list output based on EMME/2
data banks. The emphasis is put on making the reader understand the foundation on which Enif is
built. The user interface itself, i.e. the details of the interaction between the user and Enif are not
dealt with explicitly, since a) the current implementation is not final and the external aspects may still
change and b) this paper is not intended to be a reference manual.

Enif – The Basic Concepts

When the Enif project started in the summer of 1999, its design was approached with the following
goals in mind:

1. Provide all functional features needed within the framework of a consistent modern graphical
user interface.

2. Remain compatible with all current EMME/2 applications at the data bank level. This compati-
bility implies being able to access the data available in these data banks. It does not imply that
Enif should be able to produce identical output as does EMME/2.

3. Run with identical functionality on all platforms on which the current version of EMME/2 is run-
ning. This means that Enif must be able to run both under the Microsoft Windows family of
operating systems as well as under the various flavors of Unix supported by EMME/2.

2

4. Build a solid base which is strong enough, both on the conceptual level and on the implemen-
tation side, to build upon the future developments of EMME/2 for many years to come.

5. Provide useful functionality to the EMME/2 users within a reasonably short time frame.

In the past 15 months most effort went into the development of the general concepts and the basic
mechanisms needed for their implementation. These concepts are more important for understanding
the “philosophy” behind Enif than the details of graphical interface presented to the user on screen.

The basic design of Enif is shown in Figure 1 in the form of a block diagram. The central part of
the diagram describes the internal concepts which, as such, are not specific for the graphical user
interface, but form the abstract pilers on which Enif is built. This includes the internal representation of
the network, the attributes, the expressions and the parameters, which are the basic objects used to
build user configurable objects in Enif.

The graphical interface part of Enif is depicted on the right hand side of Figure 1. It is based on an
abstract network plane which receives the graphical information generated by a set of mappers
using an abstract drawing and a writing tool we call the stylus.

Other functionalities can be based on the foundation provided by Enif, as indicated in the upper left
corner of the block diagram. One example of this is the list generator.

The access to the EMME/2 data bank is completely modular and separated from the rest of the Enif
code. This implies that accessing network data from other sources than an EMME/2 data bank could
be achieved by simply providing the corresponding alternate network I/O modules, should this ever
be required.

���������������������
���������������������

���������������
���������������

������
���
������
��� ��

�

��
�

		
		
		
		

��
��
��
��

��
��
��
��

��
��
��
��

�����������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���

���

Network Plane:

Network:

Expressions:

Parameters:

List Generator:

....

EMME/2 Data Bank Interface:

- value providers
- string or numeric

Attribute Manager:

Elements:
Node

Link

...

Attributes:
Node

Link

...

1
2
3
4

I
J
XI
YI
......

Front

Back
Plot Configuration:

Calculator:

Enif - General Design

EMME/2 Data Bank:

Mapper Stack:

Semi-abstract network element types

- grouping
-1 or several values
- type (float, string,...)

- single / multi valued
- element selectors
- element iterators

Styl
us

Grid

Node Attr
Links

Display Control:

- window
- viewport

- zoom
- pan
- output device

- bounding box

- attribute storage
- attribute format
- expression attributes

Configuration
Manager

external files

List configurations

save load

 and traditional EMME/2
- combined use of Enif

 any existing application

- standard EMME2BANK

LINK VOLUME SPEED

1-2 2480 15.0
2-1 1530 25.3
2-3 780 35.2
3-1 4530 18.2
3-2 920 37.2
3-5 1011 58.6
4-3 2502 60.1
5-4 2502 60.1
5-6 1822 45.0
6-5 250 60.0

Mapper 1
Mapper ...

Mapper N
Mapper N+1

Page 1
Page 2

Page..

save load

Plot configurations

user
input

- auto synchronisation
 within same group

- read-only or read-write access

- access to network and matrix data
- one-shot read or on-the-fly access

1

2237

307

855

128

- generate output to other paint devices

 screen
 printer
 magnifier

- display graphics and texts using a stylus

- fully compatible with

- receive user input and dispatch it

Figure 1: General design of Enif

In the following sections, all these fundamental building blocks of Enif will be discussed in more detail.
While reading on, it is a good idea to return back to Figure 1 from time to time. What at the beginning

3

might look like a bunch of empty phrases, will —hopefully!— after having reached the end of this
paper be filled with concrete meaning and serve as a useful summary of the functionality of Enif.

In order to give an idea how Enif presents itself on the screen, a typical Enif window is shown in Figure
2. It shows the zonal productions and attractions colored according to the corresponding mode
share of the auto mode.

The main part of the Enif window shows the current view of the network plane. Located above it, the
tabbed mapper control dialogs are used to access the configurable parameters of the current plot
configuration. At the left side of the window, the view controls can be used to change the current
view or to send the current plot to the printer. A menu bar on the top gives access to the various
available tools and options, and, finally, the status bar on the very bottom of the window is used to
display transient messages.

Figure 2: A typical Enif window

4

Network and Network Elements

Since one important goal of Enif is to remain 100% compatible with existing EMME/2 application data,
the network structure is essentially given by EMME/2. However, the internal network representation is
completely different from the one used in EMME/2 [2, 3]. The access and interpretation of EMME/2
network data is completely encapsulated in a separate modular network I/O interface.

Internally all network elements are represented using a common base class. This allows the imple-
mentation of many functionalities in a uniform way, independent of the actual type of network ele-
ments. This includes functionalities such as data access, handling of network attributes, expression
evaluation and the definition of sub-networks by element selection.

Element type: Pointers: Flags:

mode next mode in sequence isAuto, isTransit, isAuxAuto,
isAuxTransit

node next node in sequence, first outgoing
link, first incoming link

isZone, isIntersection

link I-node, J-node, next link with same
I-node, next link with same J-node,
first outgoing turn, first incoming
turn

isAccess, isEgress,
isConnector, isAuto, isTransit,
isAuxAuto, isAuxTransit

transit vehicle next transit vehicle in sequence,
transit mode

transit line next transit line in sequence, first
transit segment, transit mode

transit segment next segment of same line, transit
line, I-node, link

isFirst, isMidLayover, isLast,
isHidden

turn incoming link, outgoing link, next
turn with same incoming link, next
turn with same outgoing link

isUTurn

zone node

origin zone

destination zone

O-D pair origin, destination

Table 1: Element type specific pointers and flags

The network element types include all those already used in EMME/2, i.e. mode, node, link, transit
vehicle, transit line, transit segment and turn. In contrast to EMME/2, matrix related data is also con-
sidered part of the generalized network. This leads to the additional network element types zone,
origin, destination and O-D pair.

While most data handling can be implemented at the abstract network element level, all network
specific aspects have to be implemented at the level of the specific element type, e.g. finding the
outgoing or incoming links of a node or following the segments along the itinerary of a transit line. This
is achieved by associating with each network element type a type specific set of pointers to other
network elements, as well as a set of flags. These are shown in Table 1.

The data associated with an individual network element consists of three parts:
• a type independent part containing index and flag information;
• a mandatory type dependent part containing all structural data necessary for the correspond-

ing element type (this part essentially consists of generic element identifiers and type specific
pointers);

5

• an optional, user configurable and application specific part containing information which needs
to be accessed efficiently.

In Enif, a network is defined as the collection of its network elements, an attribute list for each element
type (see below) and some auxiliary data, such as titles and element counts.

Network Attributes and Attribute Lists

One of the most basic and most important functionalities when dealing with large transportation
networks is to provide a flexible and efficient way of accessing attribute values associated with net-
work elements. In Enif, this is implemented using a very generalized approach consisting of network
attributes which are structured into attribute lists.

Enif’s concept of network attribute is much broader than the one used in EMME/2. While in EMME/2
a network attribute always implies a value which is physically stored in the EMME/2 data bank, in Enif
the term attribute covers any kind of predefined value provider for the network elements of a specific
type.

Network attributes are characterized by the following properties:
• Element type: Defines the type of network elements for which this attribute can provide values.
• Value type: Defines the type of value which is provided by this attribute, such as boolean, inte-

ger, floating point, string or pointer to another network element.
• Data source: Attribute values may be obtained in many different ways:

– directly from the information stored within the network element’s data buffer;
– using “on-the-fly” access by calling the EMME/2 data bank I/O module whenever a value

is needed;
– by indirect access to an attribute of another network element via a pointer attribute;
– by calling a type specific network element function;
– by providing the same constant value for all network elements;
– by evaluating an expression based on the other attributes of the same element (see below).

• Format: Information on the default formatting of the attribute values, such as field width, decimal
precision and alignment.

• Protection and validation: Attributes can be declared read-only (e.g. assignment results) or
have write permission so that their values may be modified. For writable numerical attributes,
the allowed value range may be defined by lower and upper bounds, as well as a default value
which is used to initialize newly created elements.

A special data caching mechanism is provided which allows the user to define which attributes
should be cached, i.e. stored directly in the data buffer of each network element, instead of reading
it on-the-fly from the external data bank whenever needed.

Obtaining an attribute value for a specific network element is done simply by calling the correspond-
ing method of the attribute with the pointer to the network element as argument.

Constant attributes are attributes which are not associated with a particular network element. They
can be evaluated for all network element types (or even outside the context of network elements
altogether) and will always return the same constant value.

Attributes of the same element type are combined into attribute lists. The network contains one
attribute list for the attributes of each element type, and an additional one for constant attributes
associated with the network. The latter includes constants such as the scenario number, the scenario
title, mode masks and the scalars defined in the data bank.

Additional “private” attribute lists may be created when needed, e.g. in the context of a list or a
specific mapper.

6

Expressions

In Enif, most functionalities which access network data are not implemented by accessing network
attributes directly, as is the case in EMME/2. Rather, wherever possible, the available functionalities
(such as selecting subnetworks, plotting or listing network related data) are based on expressions.

In general, an expression is made up of an arbitrary combination of operands, operators and calls
to intrinsic functions, using syntax rules compatible with those used by the expressions in EMME/2. In
practice, however, an expression is often as simple as a single constant value (e.g. “1”) or an attribute
name (e.g. “volau ”).

In contrast to EMME/2, where expressions are limited to handle exclusively numerical values, Enif
expressions support both numerical and string values. A strict distinction is made between numerical
and string values. Each operator has well defined operand types and each intrinsic function requires
its arguments to be of the specified types. Special intrinsic functions can be used to convert strings
to numbers and vice versa, should this become necessary.

Each operand of an expression must correspond to one of the following:
• a numeric value (e.g. 0, 3.14159),
• a constant string enclosed in double quotes (e.g. "abc"),
• a numeric or string attribute from one of the associated attribute lists (e.g. volau),
• a valid subexpression enclosed in parentheses (e.g. (volau+volad)),
• the result of a call to an intrinsic function (e.g. max(speed,60) .

A list of all available operators is shown in Table 2, grouped in the order of increasing operator prece-
dence. It also shows the required operand types for each operator, as well as the type of the result
of the operation. All operators are binary operators, with the exception of the “+” and “- ” operators;
these can be used as unary operators at the beginning of subexpressions.

Note that all logical and comparison operators return 0 for FALSE and 1 for TRUE. Operands of logical
operators are assumed TRUE for all non-zero values, FALSE for zero values.

The available intrinsic functions are shown in Table 3. Note that some functions allow for a variable
number of arguments. For technical reasons, the number of arguments for these functions is currently
limited to a maximum of 30. Two noteworthy functions of this type are the lookup() and the which()
functions. The function lookup(i, v1, v2, v3, . . .) takes an index i as first argument and returns vi, the
i-th of the following values. The function which(v, v1, v2, v3, . . .) takes a value v as first argument and
compares it with the following values vi. It returns the index i of the first match v = vi found, or 0
otherwise.

In addition to operands and operators, an expression may also contain comments enclosed in brack-
ets, e.g. “[auto network without connectors] isAuto && not(isConnector) ”. This is useful to
explain the meaning of an expression to those users who are not (yet) Enif experts.

Depending on the context, an expression may allow only a numerical result or also accepts a string
result. But even expressions which are limited to numerical results may include string valued subex-
pressions.

In certain contexts it is possible to specify an expression returning more than a single value. This is
done by simply specifying several subexpressions, separated by commas. The maximum allowed
number of expressions is given by the particular context. E.g. the expression

volau-volad, volad
provides two values, the auto volumes minus the additional volumes as first value and the additional
volumes as second value.

A special case is the empty expression, i.e. an expression with no operands at all. Empty expression
will always return a zero value as result.

While the expressions in Enif are much more powerful than those in EMME/2, they remain essential-
ly compatible with EMME/2 expressions. All attributes, operators and intrinsic functions which are

7

Operator: Description: Operand and result types:

|| or .or. logical OR num|| num → num

&& or .and. logical AND num&&num → num

.xor. logical XOR num.xor. num → num

!= or .ne. not equal num!= num → num

< or .lt. less than num<num → num

<= or .le. less than or equal num<=num → num

== or .eq. equal num==num → num

>= or .ge. greater or equal num>=num → num

> or .gt. greater than num>num → num

!= lexically not equal str != str → num

< lexically less than str <str → num

<= lexically less than or equal str <=str → num

== lexically equal str ==str → num

> lexically greater than str >str → num

>= lexically greater or equal str >=str → num

~ string matched by regular expression str ~str → num

!~ string not matched by regular expression str !~ str → num

& bitwise AND num&num → num

+ add num+num → num

+ string concatenation str +str → str

- subtract num- num → num

.addle. add if less or equal to zero num.addle. num → num

.max. maximum num.max. num → num

.min. minimum num.min. num → num

.pdfum. add and truncate when negative num.pdfum. num → num

| bitwise OR num| num → num

* multiply num* num → num

.mod. modulo num.mod. num → num

/ divide num/ num → num

^ or ** power num^num → num

Table 2: Operators in expressions

available in EMME/2 are also available in Enif.

Expressions are always stored as normal strings, which also implies that they can easily be saved to files
and read back when needed. However, when expressions are actually used to provide values, their
string representation is automatically compiled into an efficient internal RPN token list. Special cases,
such as empty expressions, constants or expressions consisting of a single attribute are recognized
as such, so that they can be handled with less overhead. These features allow for a very efficient
evaluation of the same expression for large numbers of network elements.

Since the user can enter and modify expressions at any time, it may happen that he or she enters
an invalid expression. For this reason, expressions entered or modified interactively by the user are
compiled immediately after the return key is pressed. If the expression is found to be invalid, the
background of the expression field becomes red (or to be more precise: changes to a special color
which is configurable in the user preferences) and the cursor is moved to the place in the expression
where the error was detected. If this is not enough to reveal the cause of the error to the user, he can
also check on the diagnostic window, where he will find a detailed description of the error.

8

Function: Description: Argument and result types:

abs() absolute value abs(num) → num

Atan() arc tangent (degrees) Atan(num) → num

atan() arc tangent (radians) atan(num) → num

Atan2() arc tangent (degrees) Atan2(num, num) → num

atan2() arc tangent (radians) atan2(num, num) → num

ceil() ceiling function ceil(num) → num

Cos() cosine function (degrees) Cos(num) → num

cos() cosine function (radians) cos(num) → num

erf() Gaussian error function erf(num) → num

exp() exponential function exp(num) → num

floor() floor function floor(num) → num

get() return corresponding stack value get(num) → num

if() if-then-else on string values if(num, str , str) → str

if() if-then-else on numerical values if(num, num, num) → num

index() index of first substring index(str , str) → num

int() truncate to integer int(num) → num

justify() left/right justify string justify(str , num) → str

left() left substring left(str , num) → str

length() string length length(str) → num

lgam() logarithm of absolute gamma function lgam(num) → num

ln() natural logarithm ln(num) → num

log10() base-10 logarithm log10(num) → num

lookup() text lookup lookup(num, str , str , . . .) → str

lookup() numeric lookup lookup(num, num, num, . . .) → num

lower() convert string to lower case lower(str) → str

match() string matching match(str , str) → num

max() maximum max(num, num, num, . . .) → num

min() minimum min(num, num, num, . . .) → num

nint() round to nearest integer nint(num) → num

not() logical NOT not(num) → num

number() convert string to number number(str) → num

put() put argument on stack put(num) → num

puti() define stack index for next put() puti(num) → num

rand() random value between 0 and argument rand(num) → num

right() right substring right(str , num) → str

sign() sign function sign(num) → num

Sin() sine function (degrees) Sin(num) → num

sin() sine function (radians) sin(num) → num

sqrt() square root sqrt(num) → num

string() convert number to string string(num) → str

string() convert number to string with decimals string(num, num) → str

upper() convert string to upper case upper(str) → str

which() which among string arguments which(str , str , str , . . .) → num

which() which among numerical arguments which(num, num, num, . . .) → num

Table 3: Intrinsic functions in expressions

9

Element Selectors and Iterators

In EMME/2, sub-network selection is implemented by a simple mechanism, in which a set of selection
clauses is specified by the user, each clause being composed of an attribute and a corresponding
value range. Network elements are selected if they satisfy the combination of all selection clauses.

In Enif, all network element selections are based on expressions. A selector is an expression which is
used to determine which elements of a given type are used in a certain functionality. The expression is
evaluated for each element of the given type and if the expression result is non-zero (or a non-empty
string in the case of a string valued expression) the element is selected, whereas elements yielding a
zero numeric value (or an empty string) are not selected. An exception to this rule is if the selection
expression is empty, in which case all elements will be selected (this is different from EMME/2 where a
selection without any clauses implied an empty set of network elements). In order to set a selector to
select no elements, it suffices to set the selector expression explicitly to 0.

In order to allow an efficient handling of subsets, the selector expression is only evaluated once for
each network element and the results are used to build a list of pointers to the selected elements
which can then be traversed very efficiently for as many times as needed without any additional
computational overhead.

a) Node selector: isZone, md9 b) Node selector: isZone, -md9

c) Node selector: isZone, xi d) Node selector: isZone, -sqrt(xi^2+yi^2)

Figure 3: Same node value plot using four different iterator expressions

While the element selection is used to decide which elements to use or not use in a certain function-
ality, it does not imply any particular order in which the elements are processed. In EMME/2, network
elements are always processed in the sequence of ascending identifiers, i.e. in the same order they

10

are stored in the data bank. In Enif, it is possible to define the order in which the selected elements
of a given type are processed by means of a so called iterator expression. If an iterator expression
is specified, the selected elements are processed in the order of increasing values of the iterator ex-
pression (or ascending collating sequence for string valued expressions). If no iterator expression is
specified, the standard sequence following increasing element identifiers is used by default.

Thus, in Enif the concept of element selection always includes the option of also specifying the pro-
cessing order of the selected elements. This is done by allowing the selector expression to provide the
iterator value as an optional second subexpression. E.g. using the link selector “volau>1000, -volau ”
in a link list will select all links having an auto volume larger than 1000 and will sort the list to have the
largest volumes first.

While the use of iterator expressions is evident for lists, it has also important implications when display-
ing overlapping graphic elements: elements drawn later will hide those elements drawn earlier at the
same position. This is illustrated in Figure 3. It contains four times the same node value plot showing the
attractions (stored in destination matrix md9) as proportional circles for the subset of nodes which cor-
respond to zones (element selection: isZone). The only difference between the plots is the iterator
expression. The following processing orders are shown: a) according to increasing attractions (md9),
b) decreasing attractions (-md9), c) from left to right (xi) and d) from outside toward the network
center (-sqrt(xi^2+yi^2) , the origin of the coordinate system happens to be in the city center).

The Network Plane

All concepts described so far dealt with the internal representation of network data and were not
related at all to the graphical user interface provided by Enif. So let’s now turn our attention to the
graphic display of Enif and the basic concepts behind it.

In Enif the term network plane is used to denote an abstract functionality which provides the possibility
to display arbitrary drawings (usually depicting transportation networks, hence the name network
plane) and texts on the screen or on other output devices.

The network plane only offers the necessary infrastructure to display drawings and texts. It does,
however, not generate any of those itself. The “clients” which are using the services of the network
plane are the mappers. These are described in a separate section below.

Without going into too many technical and implementational details, here is a list of the services
provided by the network plane:
• The network plane itself, an abstract surface on which drawing and texts can be generated

using a well defined set of drawing and writing functions.
• The network plane window which provides an on-screen view of all or part of the network plane.
• A legend window, in which additional information describing the parameters used to create

the plot are displayed for documentation and reference.
• A magnifier feature which can display a part of the current view at a magnified scale.
• A mechanism which obtains the bounding box of each currently defined mapper (i.e. the coor-

dinate rectangle which bounds the region in which the mapper wants to display its information)
and allows the mappers to update this information whenever it changes.

• Coordinate transformations from user defined network coordinates to screen coordinates and
vice versa.

• A view control system which provides all necessary facilities to define and change the view,
i.e. the part of the network plane which is currently visible in the network plane window. This
implies all the necessary infrastructure and controls to allow zooming, panning, scrolling of the
network window, as well as accessing previous or predefined windows or returning to the full
view window.

• A view updating mechanism which will inform the clients when a new part of the network plane
becomes visible and needs to be (re-)drawn.

11

• A system to dispatch interactive user input (mouse events and key strokes) to either the view
control system or to the active input mapper.

• A print facility which sends the current plot to be output on a printer – either the content of the
entire network plane or only the current view.

The Stylus

Generating even the most elaborate plot can finally be reduced to the following three simple basic
tasks: drawing of lines, filling of regions and writing of texts. Let’s now look at each of these tasks and
see what display properties are associated with each of them:
• Outlines are drawn with a pen which is defined by its color, the pen width and a line pattern.
• Regions are filled in a given color using a certain fill style.
• Texts are displayed in a specified color using a font from a certain family in a specified size and

optional font attributes, such as bold, italic or underlined.

General purpose graphic programs would normally require the specification of these display prop-
erties separately and independently for each single graphic element. However, when displaying
transportation networks there are too many network elements, rendering it neither practical nor effi-
cient to have to deal with each of them individually. Thus, it is crucial to conceptualize the graphic
display properties in a way which allows a unified specification for large sets of network elements, but
yet is flexible enough to customize plots to cover all (or at least most) needs.

In this spirit, all graphic drawing and writing in Enif is done by a versatile “all-in-one” type tool we shall
call a stylus.

A simple stylus consists of the specification of one set of the following display properties:
Pen color as a full 24-bit RGB color specification;
Pen pattern as one of the following: solid line, dashed, dotted, dash-dot, dash-dot-dot, no pen;
Pen width as a value between 0 and 16 (0 denoting the smallest possible pen width of the output

device);
Fill color as a full 24-bit RGB color specification;
Fill style as one of the following: solid fill, 94% fill, 88% fill, 63% fill, 50% fill, 37% fill, 12% fill, 6% fill, horizontal

lines, vertical lines, cross hatch, diagonal up, diagonal down, diagonal cross, no filling;
Text color as a full 24-bit RGB color specification;
Text attribute as one of the following: normal, bold, italic, underline;
Text size factor as one of the following: 50%, 64%, 80%, 100% (normal size), 120%, 150%, 200%, no text;
Text font family as one of the following: default, sans serif, serif, typewriter, decorative, user 1, user 2,

user 3 (the corresponding font family names which are actually used can be defined in the user
preferences);

Figure 4 illustrates the above choices for the non-color properties of a simple stylus. If a stylus is used in
a particular way which does not make use of some of the properties (such as e.g. for a background
which has neither an outline nor any text associated), they are left unspecified. On the other hand it is
always possible to configure a stylus to selectively suppress outline, filling or text contents, by selecting
the properties no pen, no filling and/or no text.

Note that the above display properties do not determine the character size of the text, they merely
provide a relative text size factor. The actual text size is obtained by multiplying a text size parameter
(provided by the mapper as a separate parameter) by this factor. This allows changing the overall
size of the texts very easily via one single parameter, while maintaining the relative sizes specified in
the used styli.

An indexed stylus consists of the specification of several sets of these display properties. An sequential
index is associated with each set, starting with index 0. When used with a particular index value, it

12

Text Text Text Text Text Text

Text Text Text Text Text Text Text Text Text Text Text Text Text

Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

Text Text Text Text

Text Text Text Text Text Text Text

Text Text Text Text Text Text Text Text

a)

b)

c)

d)

e)

f)

Figure 4: Non-color properties of a simple stylus: a) pen pattern, b) pen width, c) fill pattern, d) text
attribute, e) text size factor, f) text font family

provides for a convenient way to specify a systematic variation of the display properties and, thus,
can be looked at as a generalization of the color index used in EMME/2.

Index values outside the range of defined value sets are always referred to either the first or the last
set.

As the index values are not limited to integer values, but may assume any floating point value, inter-
polation properties for pen, fill and text operations are associated with each specified stylus property
set. Each interpolation property can be set to one of the following: round to next lower, round to next
higher, round to nearest and linear interpolation. This information is used to determine which set of
properties to use for fractional index values.

Linear interpolation implies that an interpolated color is used made up from the interpolated red,
green and blue components of the colors specified in the next lower and next higher property sets.
In case of a pen interpolation, the pen width is also interpolated in the same way. For all other (non-
interpolatable) properties, the setting “linear interpolation” behaves the same as “round to nearest”.

Indexed styli provide a very powerful tool to translate numerical values into discrete or continuous
color sequences. As we shall see later, when looking at network plots, the index values are often
provided by evaluating the so called stylus index expression.

The example in Figure 5 illustrates how to use an indexed stylus for generating gray-scale displays. In
this example, an index value of zero corresponds to a black filling, a value of 1 to a white filling, values
in between to the corresponding level of gray. In order to visually differentiate text and outline from
the filling, they are colored white for fillings in black or dark gray, and black for fillings in light gray or
white. The stylus used to produce Figure 5 uses only two indices, 0 and 1, which have the following
properties:

Property: Set 0: Set 1:

Pen color: white black
Pen interpolation nearest *
Fill color: black white
Fill interpolation: linear *
Text color: white black
Text interpolation: nearest *

(*: not important, as the interpolation property of the last set is never used)

13

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.0 2.1

2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.0 3.1 3.2

3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3

4.4 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.6

6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.6 7.7

7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 8.8

8.9 9.0 9.1 9.2 9.3 9.4 9.6 9.7 9.8 9.9

Figure 5: Gray-scale interpolation with an indexed stylus

A stylus can always be modified interactively by pushing the corresponding stylus button. This opens
a popup menu which, depending on the context, provides options for all allowed modifications,
such as changing of the properties, adding or removing indices, reversing the indices or copy-
ing/exchanging colors. Once a complex stylus is configured, it is also possible to associate a name
with it and store it as a predefined stylus so that it can be recalled later on, whenever the same stylus
configuration is needed again. The set of predefined styli becomes part of the user preferences.

Parameters and Configurable Objects

Enif is based to a large extent on user configurable objects, such as mappers, plots, lists or preferences
(which are all to be explained later). The mechanism which provides configurability is implemented
via a special class of objects called parameters.

A parameter is an object which is defined by the following properties:
• It is created and owned by a configurable object (owner)
• It has a name which is unique among the parameters belonging to the same owner.
• It is used to store one or several values of a given type, such as flags, integer value, floating point

value, string, text, expression, selector, stylus or bounding box.
• If more than one value is stored in the same parameter, the different values are identified by a

sequential index starting at 0.
• It emits a public signal whenever the parameter’s value changes. This signal can be caught

by other objects which need to be notified in order to adjust themselves to the new parameter
value.

• If an optional group specification is defined for the parameter, it will automatically synchronize its
values with all other parameters within the same scope which share the same group information.

• It can read from or write to an external file its value(s) and optional group information using a
standard format.

At first sight these parameter properties may seem rather abstract. But as we shall see further on, it is
this parameter concept which is responsible in large part for the flexibility of Enif.

In addition to storing simple numerical or string values, parameters are also used to store much more
complex structures, such as the expressions, the selectors and the styli described in the previous
sections. In the case of a stylus, each value corresponds to one complete set of display properties,
so that an indexed stylus is implemented simply as a multi-valued parameter of the type stylus. The
actual number of values of a parameter is determined at run time and can be changed dynamically.

By assigning the same group name to several parameters, the user can create logical groups of
parameters, which automatically synchronize their values. So subsequently the user only needs to
change the value of any one of the parameter in the group; all others will follow the change au-
tomatically. The usefulness of this grouping feature will become easier to understand later on when
discussing the automatic synchronization of parameters between collaborating mappers.

Configurable objects organize their parameters in one or more parameter lists. Within a parameter
list, the names of the parameters must always be unique.

14

The Mapper – Doing One Thing at a Time

A mapper is a user configurable object which knows how to graphically display one type of infor-
mation in certain way. Taken alone, one single mapper will only be able to provide a very limited
graphic display. As we shall see later on, the strength of the mappers does not lie in their stand-alone
use, but in combining them to generate complex and flexible displays.

As each type of mapper is implemented individually, there is conceptually no limit to the number of
different mappers nor the type of task they can perform. However, all mappers must adhere to the
same rules when it comes to interfacing with the network plane.

A mapper consists of the following components, of which some are mandatory and some optional:
• A set of parameters which defines all user configurable aspects of the mapper. One of these

parameters always contains a set of flags, some of them being generic (defined in the same
way for all mappers) and some may be specific for the given mapper type. The parameters
normally include at least one stylus which is used to define the display properties of the output
generated by this mapper. In addition to simple numerical values, such as text size, link offset or
attribute scale, the parameters often also include network element selectors and expressions.

• A network plane painting routine which can be called by the network plane whenever a part
of the network plane must be displayed.

• A mapper control dialog which allows the user to interactively configure the mapper’s parame-
ters, or at least the more important ones. The visual appearance of the mapper control dialog is
standardized and parameters of the same type always use the same standardized input fields.

• A bounding box specifying the rectangle on the network plane which this mapper will provide
display output for.

• An optional input event handler which, if available and enabled, causes the mapper to take
over mouse and keyboard, allowing the user to interact with the mapper directly on the network
plane. Mappers providing this feature are called input mappers.

• An optional legend provider which sends legend information to the legend window.
• An optional tip provider which will display context sensitive tips (also known as “balloon mes-

sages”) when the mouse rests on an object displayed by this mapper on the network plane
view.

• An optional set of active network elements. This set of elements is usually defined by the map-
per’s selector(s). If available and enabled, this feature allows other mappers to identify the
active network elements via special flag attributes (is*Active), and, e.g., to use this informa-
tion in their own selector.

Besides the above components, a mapper is free to access other, usually external resources. In
particular, mappers may access external files, e.g. to read in objects to be displayed on the network
plane, such as annotations, bit-mapped images or polygons.

Each mapper provides the following generic flags to enable or disable the corresponding services
provided by the network plane:

Flag: Enables/disables the following feature:
Control Visibility of mapper control dialog
Screen Mapper displays information on network plane view on screen
Printer Mapper displays information on printed output
Magnifier Mapper display is visible on magnifier
Legend Legend information is written into the legend window
Input Mapper takes over mouse and keyboard events when it becomes active
Bounding Box Mapper’s bounding box is used to compute the full view bounding box

of the network plane
Active Selection Mapper’s active elements will be made accessible to other mappers

Since the output of each mapper can be controlled individually to enable or disable graphic output
to screen, printer and magnifier, it is possible to design plot configurations which appear differently

15

on the different output devices. This has some interesting applications:
• Certain graphic items, such as e.g. a colored background, which are nice to see on the screen,

but have negative effects when being printed (bad readability, increased consumption of ink
or toner) may be disabled specifically for the printouts.

• Certain small displayed items (e.g. tiny texts), which are readable only on the printer and the
magnifier (since these provide a higher resolution) may be disabled on the normal screen dis-
play.

• The magnifier feature is not limited to display the same information simply bigger, but may al-
so be used to display additional information or even to instantaneously display a completely
different view of the same objects.

An active input mapper, which receives the mouse and keyboard events occurring on the network
plane, is visually distinguished by a different background color of the mapper control dialog. This
color is user configurable. In the examples shown further down, a light green background is used for
input mappers, instead of the default gray background for non-input mappers.

As this paper is not meant as a reference manual, there is no point going into the details of each of
the mapper types currently available in Enif. Also, the currently implemented mappers are essentially
limited to output-only mappers. There are a few network editing mappers which are still in their very
early experimental phase and not of any practical use yet.

Thus, we shall limit the presentation of specific mapper types to simply illustrate some of them by
means of depicting an example of their configuration in the control dialog and a small stripe of the
network plane output generated using this configuration:

Figure: Mapper: Description:

Fig. 6 Background Paints the background either in a constant color or using a tiled bit-mapped
image.

Fig. 7 Grid Generates a coordinate grid using a specified grid distance.
Fig. 8 Image Displays a bit-mapped image file at a certain position scaled to a certain

size. Many different graphic file formats (such as JPEG, PNG, TIFF, ...) are
supported. The example shows a scanned image of a city map.

Fig. 9 Annotation One or several EMME/2 annotation files are displayed.
Fig. 10 Node Box Draws node boxes of a specified size and optionally writes the node numbers

or node labels into them.
Fig. 11 Node Value Evaluates one or several node values and represents them as a proportional-

ly sized symbol and/or a text string. The example shows initial boardings and
final alightings at transit stops.

Fig. 12 Node Polygon Reads a file containing polygons and displays them. An indexed stylus can
be used to color them according to arbitrary node characteristics. Optional
node values can be evaluated and displayed either at the corresponding
node positions or at the center of gravity of the polygons.

Fig. 13 Link Base Draw link bases consisting of an arbitrary combination of a link bar, an I-node
circle and a J-node circle.

Fig. 14 Link Value Evaluates a link value and displays it numerically and/or as a proportional
bar.

Fig. 15 Transit Line Displays transit line itineraries and optionally annotates them with segment
and/or stop values.

Fig. 16 Segment Value Evaluates transit segment values, aggregates them to link values and dis-
plays these on the links as numeric values and/or as a proportional link bar.

Fig. 17 Intersection Draws intersections and displays turn values as proportional width turns.
Fig. 18 Shortest Path Computes shortest paths from or to one or several root nodes and displays

the corresponding trees.
Fig. 19 Diagram Several mappers are available to compute and display scattergrams and

histograms for the various network element types. The example shown con-
tains a link histogram with the distribution of vehicle miles by link speed.

16

Figure 6: Background Mapper

Figure 7: Grid Mapper

Figure 8: Image Mapper

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

5354

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

7071

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116 117

118

119

120

121

122

123

124

125

126

127

128129130

131

136

139

140

148

149

151

152

12

3

4

5

6

7

8

9

147

Figure 9: Annotation Mapper

17

1

2

3

4

5

6

7

8

9

10

11

12

22

23

24

33

34

36

37

41

42

47

48

49

50

51

52

5354

55

56

57

58

61

66

67

68

69

70
71

72

73

74

80

81

82

83

84

85

86

87

96

97
98

99

100

101

102

103

104

107

108

109

111

112

147

165

166

167
168

169

170

171

172

173

174

200

201

202
203

204

205
222

294

295

296

297

298

299

300

301

302

303304

305
306

307

308

309

310 311

312

313

314

315

316

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345
347 348

359

360

361

362

410

411

412413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438439

440

441

442

443

444

445

446

447
448

449

450

451

452

453

485

486

487

488

489

490

491

492

493

494

495 496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513
514

515

516

517

518

519
520

521 522

523

524
525526

527

528

529
530531

532533

534

535
536

537
538

539540

541

542

543

548

549
550

591
592

593

594

595

596597

598

599

600

601

602603
604

605
606

607
608

609610

659

660

661

662
663 664

665

666

667

668

669 670

671

672

673

674 675
676

677

678
679

680

681 682

683

684

685

686

687 688 689

690 691

692 693

694

695 696

697698

699
700701702

703704705
706707708

709
710 711

712 713

714 715 716

717

718719
720

721 722 723 724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791
806

807

808

809

810

811

812

813

814

815

816

817

818
824

825

826

827

828

829

830

879

880

881882

883
884

885

886

887

888889

890
891

892

893

894

895

896

897

898
899

900
901

902
903904

905

906907

908

909

910

911

912

913

914

915

916

917
918
919

920

921922

923

924

925

926927

928929

930

931

932

933

934
935

936

937

938

939

940

941

942
943

944

945

946

947

948

949

950951

952
953

954955

956
957

958959
960

961

962

963
964

965

966

967

968

969

970

971
972

973

974

975
976

977

978

979
980

981

982
983
984
985
986

987

988

989

990
991

992
993

994

995
996

997

998

999
1000

1001

1002
10031004

1005

1006
1007
1008

1009
1010

1011

1012
1013

1014

1015

1016

10171018

10191020

1021

10221023

1024

1025

1026
1027
1028

10291030

10311032

1033

1034

1035

1036

1037

1038

1039
1040

1041

1042

1043
1044
1045
1046

1047

1048

1049
1050

1051

1052

1053

1054

1055

1056
1057

1058

1059

1060
1061

1062

1063 1064

1066

1067

Figure 10: Node Box Mapper

Figure 11: Node Value Mapper

Zone 1
carown=0.00

Zone 2
carown=1.46

Zone 3
carown=0.48

Zone 4
carown=0.73

Zone 5
carown=0.48

Zone 6
carown=0.38

Zone 7
carown=0.55

Zone 8
carown=0.48

Zone 9
carown=0.74

Zone 10
carown=0.76

Zone 11
carown=0.80

Zone 12
carown=1.34

Zone 13
carown=1.21

Zone 14
carown=1.11

Zone 15
carown=1.07

Zone 16
carown=1.03

Zone 17
carown=1.01

Zone 18
carown=0.91

Zone 19
carown=1.14

Zone 20
carown=1.24

Zone 21
carown=1.59

Zone 22
carown=0.74

Zone 23
carown=1.02

Zone 24
carown=0.78

Zone 25
carown=0.90

Zone 26
carown=0.82

Zone 27
carown=1.10

Zone 28
carown=1.50

Zone 29
carown=1.82

Zone 30
carown=0.98

Zone 31
carown=1.18

Zone 32
carown=1.64Zone 33

carown=0.86

Zone 34
carown=1.21

Zone 35
carown=0.95

Zone 36
carown=1.08

Zone 37
carown=1.66

Zone 38
carown=1.19

Zone 39
carown=0.98

Zone 40
carown=0.93

Zone 41
carown=1.21

Zone 42
carown=1.17

Zone 43
carown=0.92

Zone 44
carown=1.12

Zone 45
carown=1.32

Zone 46
carown=1.11

Zone 47
carown=0.72

Zone 48
carown=0.89

Zone 49
carown=0.68

Zone 50
carown=1.23

Zone 51
carown=1.17

Zone 52
carown=0.68

Zone 53
carown=1.12

Zone 54
carown=1.23

Zone 55
carown=1.15

Zone 56
carown=1.07

Zone 57
carown=1.03

Zone 58
carown=0.82

Zone 59
carown=0.53

Zone 60
carown=1.59

Zone 61
carown=0.89

Zone 62
carown=0.87

Zone 63
carown=0.76

Zone 64
carown=0.59

Zone 65
carown=1.03

Zone 66
carown=0.73

Zone 67
carown=0.74

Zone 68
carown=1.16

Zone 69
carown=1.62

Zone 70
carown=1.17

Zone 71
carown=1.03

Zone 72
carown=1.26

Zone 73
carown=1.00

Zone 74
carown=1.69

Zone 75
carown=1.55

Zone 76
carown=1.41

Zone 77
carown=1.57

Zone 78
carown=1.48

Zone 79
carown=1.27

Zone 80
carown=0.70

Zone 81
carown=0.71

Zone 82
carown=0.97

Zone 83
carown=0.92

Zone 84
carown=0.94

Zone 85
carown=0.00

Zone 86
carown=0.98

Zone 87
carown=0.63

Zone 88
carown=1.18

Zone 89
carown=1.43

Zone 90
carown=1.09

Zone 91
carown=0.92

Zone 92
carown=1.10

Zone 93
carown=0.00

Zone 94
carown=1.25

Zone 95
carown=1.17

Zone 96
carown=0.86

Zone 97
carown=0.87

Zone 98
carown=0.66

Zone 99
carown=0.62

Zone 100
carown=1.10

Zone 101
carown=1.00

Zone 102
carown=1.08

Zone 103
carown=0.21

Zone 104
carown=1.08

Zone 105
carown=0.00

Zone 106
carown=0.99

Zone 107
carown=0.75

Zone 108
carown=0.70

Zone 109
carown=0.89

Zone 110
carown=0.79

Zone 111
carown=1.07

Zone 112
carown=0.93

Zone 113
carown=0.84

Zone 114
carown=0.97

Zone 115
carown=1.12

Zone 116
carown=1.08

Zone 117
carown=1.06

Zone 118
carown=1.09

Zone 119
carown=1.03

Zone 120
carown=1.16

Zone 121
carown=1.38

Zone 122
carown=1.42

Zone 123
carown=1.22

Zone 124
carown=1.36

Zone 125
carown=0.00

Zone 126
carown=0.00

Zone 127
carown=0.00

Zone 128
carown=0.00Zone 129

carown=0.00

Zone 130
carown=0.00

Zone 131
carown=0.00

Zone 136
carown=0.00

Zone 139
carown=0.00

Zone 140
carown=0.00

Zone 147
carown=0.00

Zone 148
carown=0.00

Zone 149
carown=0.00

Zone 151
carown=0.00

Zone 152
carown=0.00

Figure 12: Node Polygon Mapper

Figure 13: Link Base Mapper

18

73138
85

3885

56
3

370

38
85

705 52
1

629

38
25

40
1

33
46

30
4

30
97

30
4

30
97

11
26

728

22
6

152

830

15
2202

370

39

39

81
7

181

497

11
33370

28
9

613

727

249152
426

700

769

30
8

93
5

260

588

216

180
568

394

254

844

216

834

65

1177

234

65

996
1038

3390

299

192

2213

389

1626

113298

1402

276

223
243

184
182

1234

1448

207

98

2166

370

2272

207

468

207

98

2479

446

2066

31
0

136

81
8

47

263

53

101

55

322

1133

165

157

765

397

57
2

427

11
79

56
9

90
3

51
9

736
209

65
4

418

60
1

127

47
7

52

973

127

453

52

230

1314

453

52

453

665

345

141
595 266

595

127

1248
275

554

1024

428

87152
9

1337

466529

175

2314

46
6

13
48

849

90418

18

429

18

944

1691

18
76

2757
317

27
63

299

1659
317

1659

260
278

318

914
356

348

356
1213

87

480

30
05

24
28

28
38

21
72

256

17
26

11

21
61

325

28

352

17
26

369

24
86

9720
95

27
51

19
77

197

25
70

1516

19
78

1464

66

1441

827

112

12
32

3290

122
432

20

1652

14
65

14
78

15
34

281

14
25

805

819

64310
91

643

56

319

319

56

56

827

1091

56

86
1

60

10
88

820

47

801

14
55

15
6

31

33
28

28

1112279

325

1256516

126

1400

516

192

254

309

39

108

32

452

103

299

27

429

6

12

156

182

43
6

592

392

174

362
523

411

273

328

26

184

27

204

26

614174

614

292

619

409

220

584

14
85

3697

220

36
97

13
10

31
58

64

12
94 67

30

204

204

36

184

23

13923

139

168

40

201

27
10

51

13
46

1400

691

1008

691

13
6

686

1108

782

663

871

26
09

488

17
14

343

809

14
20

86
1

14
20

17

9

33
9

933

1310

801

84
4

1310

12
3

7

10

12
3

10

60

18

53

213

64

3

21
3

64

216

53

2128

91
9

17
6

72
3

1414

42
0

1010

34
3

573

1057 2690

1583

3747

1588

16
9

3621

1835

3787

77
9

1244

3633

1333

4223

1095

23
8

4223

819

276

1485

4148

980

3110

4626

828

4283

813

66

4334

1598

214

1664

275

4

27
5

39
05

214

1851

39
05

27
5

581

432

39
05

594

75

276

51
9

519

36

45

44
91

36

627

41

627

25
1

41

25
1

873

41

231

227 222

31
2

237

772

22
5

52

25
0

48
8

696

44
8

153

360

359

44
9

483

415

572

23
9

385

16
6

757

293

18
0

687

13
9

240

30
0

714

176

20

664

32

724546

381
22

1

25
7

44
9

18
0

5

231

222

32

231

222

231

5

27
9

867
662

502

940

32

80

50211
2

653

1164

73

313

13
76

407

560

239

560

15
9

73

159

277
1195

1031

1122

590

88
7

2153

410

12
2

671

2298

639

2264

698

90

43
0

2289

444

27
2

1081

388

1300

388

1738

31
6

5

1278

1295

1542

13
99

1220

497

23
8

12
4 812

58
7

472

185

235

593

20
1

32
2

11
2 371

652

226

358

229

72
3

498

15
8

72
8

12
7

93
6

254

1026

89
6

47
7

337

207

436

35
5

74

69
3

37558
0

34

34
1

239

146

357

58
0

127

42

9

12

29

60
1

60
4

16
90

896

16
90

89
6

179

191

202

86
9

9815
8

86
9

86
9

15
8

622

12

46

40

41

12

108

148

145

40
6 99

45

41

14
9

45
9 48

45
9

20
1

41

47
78

70

103

12
89

32
2

146 35
3

13
14

749

50
635

7

184

690

18

320

591

47
3 289

326

43

19
8

103

345
103

299

16
70

50

824

81

15

46

36

81

21
7

39
7

43

13
5

18

20
63

624

66
3

624

705

21
39

78 58
5

13
5

287

31

70

133

31

39
7 133

31 43

21
7

133

31

51

17
10

51

29
9

39
7

24

29
4

18
52

41
714

00

173

33
7

456

179

456

27
4

6

10
37

5
5

5
10 383

27
8

78
2

78
8

26871248

1414

1248

62
212

2475

801

739

2237

1335

894

252

109814
27

215

354

1637

43

43

1315

49

635

49

32
2

12
1321

994

2314

994

994

295

28
28

639

13
3

237
64

871

405

619

99
7

112

18
16

543

59
9

73
13885

39718

485

6

3509

376
731

674

313

377

1141

377 377

46
8

1461

83
7

Figure 14: Link Value Mapper

v=2

40a

v=23

v=
31

40
a

v=33
40a

v=137

v=222

40b

v=131

v=157

40b

v=122

40b

v=
0

v=42 41a v=42

41a

v=42

v=42

41a
v=191

v=275

41a

v=262

v=222

41b

v=131

v=157

41b

v=12941b

v=
122

41b

v=28

42a

v=28

42
a

v=30

42a

v=69

42a

v=65

v=104

42
a

v=13

v=12

42a

v=12

v=6

v=1

v=2

42a

v=7

v=
7

42a

v=0

v=0

42b

v=
8

v=8

42b

v=9

v=11

v=28

v=86

42b

v=65

v=64

v=
37

v=
35

42b

v=33

v=27

42b

v=28

42b

v=
20

42b

v=9

v=38

43a

v=37

43
a

v=40

43a

v=92

43a

v=87

v=138

43
a

v=18

v=16

43a

v=15

v=7

v=0 v=
2

43b

v=2

43b

v=113

43b

43
b

v=44

v=34

43b

v=37

43b

v=36

43
b

v=28

43b

44a v=45

44a

v=45

44
a

v=48

44a

v=111

44a
v=105

v=166

44
a

v=28

v=28

44a

v=32

v=24

v=17

v=17 44a

v=17

44a

v=
85

44b

v=78

44b

v=52

v=55

v=90

v=180

44b

v=124

v=
61

v=
57

44b

v=53

v=44

44b

v=45

44b

v=
32

44b

v=15

v=32

45
ae

v=
78

45ae
v=

78

45
ae

v=
10

4

v=
10

3

45
ae

v=
10

1

45
ae

v=
133

v=242

45
be

v=
25

6

45
be

v=
27

7
45

be
v=

28
4

45
be

v=
260

45
be

v=
26

0

45be

v=100

46
a

v=
19

0

46a
v=

256

46
a

v=
33

7

v=
33

7

46
a

v=
47

9

46
a

v=
549

v=497

46
b

v=
58

0

46
b

v=
64

7
46

b
v=

66
9

46
b

v=
654

46
b

v=
61

9

46b

v=047a
v=27

47a

v=21

47a

v=9

47a

v=
9

47a

v=
0

47b

v=0

47b

v=0

47b
v=1

47b
v=1

47b

48ae
v=372

48ae v=384
48ae

v=371
48ae

48ae

48ae
v=383

48ae
v=384

v=385
v=385

v=
0

v=
8

48be

v=44

48be

v=48

v=48

v=45

48be

v=47

48be
v=41

48be

v=302
49ae

v=302
49ae v=321

49ae
v=311

49ae

49ae

49ae
v=326

49ae
v=329

v=330

v=330

v=
0

v=
8

49be

v=44

49be

v=48

v=48

v=45

49be

v=47

49be
v=41

49be
v=41

50ae
v=294

50ae
v=294 50ae

v=313
50ae

v=305
v=320

v=320
50ae

v=323

50ae

v=
2

v=0

v=
8

50be

v=42

50be

v=45

v=45

v=40

50be

v=42

50be
v=36

50be
v=36

v=5
51ae

v=10
51ae

v=86
51ae

v=123
51ae

51ae

51ae
v=171

51ae
v=217

v=222

v=222

v=
0

51be

v=76

51be

v=79

v=79

v=63

51be

v=60

51be
v=61

51be
v=10

v=
16

52
a

v=
16

52
a

v=
58

v=
58

52
a

v=
14

3

52
a

v=
14

5

v=115 v=0

v=
1

v=
6

52
b

v=
3

52
b

v=
2

v=
2

52
b

v=
2

52
b

Figure 15: Transit Line Mapper

Figure 16: Transit Segment Value Mapper

Figure 17: Intersection Mapper

19

Figure 18: Shortest Path Mapper

Distribution of Vehicle Miles by Speedvehm

mph

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

Figure 19: Diagram Mapper

Note that the above list of mapper types is by no means complete. It just shows those mappers
which have already reached a stage of development which is close to production level. Some
additional mappers are already under development now and we have already many more ideas for
new mappers to be developed in the future.

Combining Mappers to Obtain Plots

Now that we have looked at the mappers individually, it is time to combine them to the final product
— the plot.

This is done by the creation of a mapper stack, which is an ordered list of configured mappers that
are called one by one to generate the contents of the plot on the network plane. The mapper
control dialogs of these mappers (except for those whose control windows are disabled by the cor-
responding mapper flag) are arranged in the form of a tabbed dialog, where the tabs are arranged
from right to left, having the first drawn mapper (background) on the right, the last (foreground) on
the left. This is illustrated in Figure 20, which combines some of the mappers taken from the examples
of the previous section, in the following order:
• Background mapper from Figure 6
• Image mapper showing a scanned street map from Figure 8
• Link base mapper showing the base network from Figure 13
• Node value mapper showing initial boardings and final alightings from Figure 11

The parameters of a mapper can be accessed by clicking on the mapper’s tab, which causes the
corresponding mapper control dialog to be displayed. The mapper whose control dialog is currently

20

Figure 20: Combined output of several mappers

displayed, is called the active mapper. If this mapper happens to be an input mapper with its input
flag enabled, it will take over the control of the mouse and keyboard events which occur on the
network plane.

The parameter grouping mechanism, which was presented earlier, is an important feature when
combining mappers. As each mapper has its own set of parameters, when combining several map-
pers to a plot, often some of these parameters correspond to the same logical value. E.g. the offset
of a link value bar normally corresponds to the offset used for the link base, or, when displaying several
volumes in a multi-layer band width plot, the same scale is usually used for all of them. Without an
automatic synchronization of these values between the different mappers, the user would be obliged
to change all these value separately for each mapper — which might become quite cumbersome,
even for simple plots.

The parameter grouping allows associating an optional group name with each parameter. Subse-
quently, when a parameter value in one mapper is changed, the change is signaled to all other
mappers, which in turn propagate the signal to their own parameter list, causing parameters with the
same group name (and compatible value type) to be updated.

724

72
6

70
1

58
0

65
9

1871

1871

1871

1385

539
1378

451

1172

445

1142

444

1138

520

1083

498

527

724

549

494

719
479

677

586

693

696

696

724

445

677
414

471
616

1098

11
20

713

971

593

801

593

664

99
4

610

63
5

37891
9

390

827

390 468

713
971713

971713

866807
836

709

51
0

71
9

510

1011

827

365

419414

1077

395
407

651

858

775

1031

398

395

520

361

609

609

609

631 416

1552

1046

1558

1123

425
416

425
416

1553

1119

391 472

1664

455

1196

516
440

1098

687
419

1680

942

1622

1070

692

425

592

706

1003

1013

1024

1089

1098

595
544

861 544

1469

1153

380

1395

703

923

668

811

1804

1689

977

867

801

431

728

728

386727

3

4

5

6

8

47

49

414

415

416

417

418

419

420

421

422

423

591

694

886

888 889

890

891

892

893

894

895

896

897

898

899

900

901

902

903904

905

916

917

918

919

920

921
922

923

924

925

926
927

928

929

930

931

932

936

937

938

939

940

941

942

943

944

945

946

947

948

949

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019
1020

1021

1026

1027

1028

1029

1030

1031

1032

1033

1037

1038

1039

1040

1041

1060

1061

1062

Figure 21: Transit volumes for express and standard busses

An example using parameter grouping is illustrated in Figure 21. This plot is defined as the combina-
tion of five mappers (from back to front): simple white background mapper with its control dialog
disabled, transit segment value mapper for the volumes of the express bus lines, transit segment val-

21

ue mapper for the volumes of the standard bus lines, link base mapper and node box mapper. The
following parameter groupings are used in this plot configuration:
• text size for express and standard bus volumes
• number of decimals for express and standard bus volumes
• scale for express and standard bus volumes
• link offset of link base and express bus volumes
• link selector of link base, standard and express bus volumes
• stylus for express and standard bus volumes (express bus volumes use index 0, standard bus

volumes use index 1)

With this grouping, the user can change any of the above parameters for any one of the applicable
mappers and the other parameters in the same group will follow the change automatically.

A mapper control manager implements all the functionality needed to create and edit the mapper
stack. It provides the following operations:
• add a new (unconfigured) mapper to the mapper stack
• delete a mapper from the stack
• duplicate an existing mapper including its complete configuration
• change a mapper’s position within the stack by moving it up or down
• set or unset the generic flags of a mapper
• edit a mapper’s parameter values and/or group specifications
• read one or several configured mappers from a configuration file and include them into the

stack

A plot configuration (or often just short “plot”) is defined by a stack of fully configured mappers
and some additional parameters related directly to the plot, such as plot flags, name, description,
caption and icon text and the name of the active mapper.

Note that a plot configuration is not directly dependent on a particular EMME/2 application or scen-
ario, but can be used with any network. When a new network is loaded, e.g. after switching to a
different scenario, the mappers automatically resynchronize their network dependent parameters.
Of course, if mappers access user defined network attributes, these have to be defined in the new
network, otherwise the expressions will be signaled as invalid.

The current plot configuration can be saved to a file and reloaded again later on, whenever the user
wishes to produce the same type of plot again. In addition, plot configuration files can be registered
in the users preferences, so that they will be accessible directly on the Enif “Plot” menu by their name.

In the remaining part of this section, the possibilities of Enif are illustrated by some example plots which
were produced using the standard Winnipeg EMME/2 demonstration data bank.

Fig. 22 A simple plot composed only of a background mapper, a node polygon mapper and some
legend texts. It uses an indexed stylus with linearly interpolated fill colors to produce a zone
map showing the different levels of car ownership in different colors.

Fig. 23 This plot is composed of a satellite picture in the background on which are overlaid an
annotation of the rivers (they don’t really fit the satellite image to well. . .) and a “street”
network layer composed of several link base mappers.

Fig. 24 A detailed auto volume plot which shows link and turn volumes.

Fig. 25 A typical bandwidth plot showing the auto, transit and auxiliary transit assignment results as
a multi-layer volume plot.

Fig. 26 This plot shows the distribution of vehicle miles traveled by auto speed. An indexed stylus
using a linear color interpolation is used to color the bars by speed from red (very slow)
to dark green (very fast). In order to visualize where the different speeds occur on the
network, a small network plot is superimposed on the top right corner by means of a link
base mapper using the same indexed stylus.

22

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3233

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

5354

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
71

72

73

74

75

76

77

78

79

80

81

82

83

8485

86

87

88

89

90

91
92

94

95

96

97 98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113 114

115

116
117

118

119

120
121

122

123

124

126

127

136

139

147

148

149

151

152

Car ownership in Winnipeg

Plo t genera ted by En i f 2000-10 -09 15 :56 :44

Car ownership:
0.50 cars/HH
0.75 cars/HH
1.00 cars/HH
1.25 cars/HH
1.50 cars/HH
1.75 cars/HH
2.00 cars/HH

Figure 22: Car ownership on zone polygons using an indexed stylus

Satell i te photo copyright by NASA

Figure 23: Street network on top of satellite image

23

6

7

8

80

82

84

97

98

99

100

101

102 109

110

1114

1
3

9
2

977

709 1839

1799

1685

2316

1
0

6
5

8
1

1
9

0
3

7
3

7

667
647

613

1
1

8
3

622

710

7
3

7

621

9
3

4

905

828

694

8
2

3

1733

1939

925

1747

923

1762

1351

1633

1032

1317

948

1463

948

770

7
9

9

613

1026

77
0

926

664

650

9
1

2

1098

7
9

0

1244

8
0

6

13
03

1
0

2
2

1
0

2
2

1
0

0
2

1
5

7
5

1
5

9
2 7

9
0

1
5

9
2

1
5

9
2

7
9

0

11
57

11
57

1
6

0
5

9
4

0

16
31

16
31

15
97

1626

1463

876

933

692

8
9

0

678

797

1
3

5
0

2052

1
1

6
3

8
5

6

10
62

84
1

1152

968 1597

968 2052

610

861
1094

1400
1223

1152

1064
1

0
3

4

678
678

608
1

0
2

1

6
0

41
1

6
1

88
4

11
47

70
2

851

1330

88
4

78
0

78
0

674

78
0

77
0

842

1152
1055

1048

844

1036

612

1058

897

668

673

1138

629

719
719

1133

665

641

785

1046

1121

785

1121

715

1
5

4
6

1110

88
0

10
43

948

881
630

6
0

7

3

51

37

13

8

24
42

5

15
45

38 24

159

127

1
2

7

2
3

0

298

1
0

1

95

155

251

12
1

228

79
121

2
3

8
215

17
9

6922

5

27

89

175

409

21
6

40

85

145

28
1

274

110

60

200

255

67

7
5

4
4

5

517

3
7

9

5
3

9

3
8

6

321
212

1
8

9

306

2
6

4

7
8

1
8

9

497

7
8

23

528

283

65

164

549
544

3
2

6

168

433

2
9

3

292

201

2
4

7

506

409

404

590

411

20
6

306

2
6

6

453

3
1

3

1
5

2

402

4
8

9

533

1
3

6

481

174

2
9

0

3
4

9

47

3
9

8

294

1
0

0

398

2
8

6

512
396

2
8

7

345

4
4

4

542

415

373

3
4

1

2
7

9

23

2
8

4

4
3

229

517

1
7

1

148

171

399

304

106
417

390

511

63

427

2
4

1

4
5

3

37
6

445

25
1

25
4

461

32
1

483

577

54
6

432

497 27
3

275

5
7

5

356

23
5

29
9

380

34
5

327

341

51
5

13
9

149

52
0

14
1

324

39
7

49
7

307

300

33
1

124

3
3

3
3

3
3

27

3
0

6

105

21

10

102

3
4

0

348

189

13

407

37

5
3

6

287

5
7

1

118366

185

357

47
0

242

11

10
5

51
6 75

51
6

13
9

461

19
3

74

38

87

13
1

233

19
4

175

205

217

184

23
5

218

21
9

228

128

40

32
9 125

153 9

120

103

106
66

403

24
0

4
1

3

42

7249

24
0

37
3

9

23
4

4023
4

212

37
3 137

139

27

28

199
28

37
7

10

19

42
8

8

407

17
3

292

22

28
0

25
4

25
6

25
4

25
6

16
3

2
3

5

2
9

9
3

5
6

476

510

515

562

521

476

47
6

500455

468

499 467

499499

289
17

289

476

31
7

31
7

24

32
7

23
7

495

23
7

10

125

27

141 475

488

32

33

033

592

33
31

528

53

559

295
348 403

493 403

94

435

593

1

479
593

1

97

487

98

320
112

117

5

505

12

3

534

15

523

483

140

121

97

121

127

457

493

149

392

19

457

13

236

483

152

427

106

523

5

19
6

13
3

5

5

35

47

35

35

67

19
4

437

29 407

73 11

37

2

25

528

23

390

167

55

237

56

390

501

83

150
316

390

12

414

Figure 24: Link and turning volumes on auto network

587

48
5

2447

2898

1148

2645

815

545

2348

87
4

13
92

656

1839

1183

770

461

483

613

1026

77
0

926

11
57

12
38

12
91

51
5

12
47

1626

876

933

692

476

510

89
0

678

797

13
50

2052

838

656

838

656

1899909
1652

838

996

1163

515

856

10
62

562

84
1

521

1152

476

47
6

500
455

968

1597

968

2052

610

861
1094468 1400

1223

1152

1064

499

1034

467

678499499

678

608

10
21

604

11
61

88
4

476

11
47

70
2

851

1330

88
4

78
0

78
0

674

78
0

495

77
0

842

475

488

1152

592

528
559

493

593

479

593

487

1055

505

1048

844

534 523

483

1036

1064

457

493

612

457

1058

483

897

523

668

673

1048

1138

629

719

719

1133

665

528 641

785

1046

459

612

652

2348

652

702

652

538

732

488

829

762

495

837

1300

1121

785

501

1121

715

15
46

1110

88
0

588

10
43

16
30

16
89

709

15
84

16
56

17
14

749

70
4

71
8

718

536

750

53
6

1011

610

71
8

66
5

54
6

70
7

948 73
1

881

10
37

630

1375

604

1194

47
0

1083

754

1554

1488

780

1779

827

1677

1107

2411

801
1107

852

819
1196

701

641

533

715

701

1193

885

845

1146
592

711

801
762

620

2447

595

620
1852

1009

620
1441

679

627
1499

1151

480
785916

8691120

612

698

1561
1184

940

932

996

715

1271

110312
59

796

515

12
59

79
6

15
42

68
9

18
48

98
5

17
30

98
5

1014

17
30

58
9

845

83
8

58
3

718

13
82

58
7

591

58
7

12
47

2196

911

1906

606

862

1201

58
8

503

1965

1851

1872

17771821

2699

14
13

14
13

14
70

555

513

513

711

2699

468

971935

866

1020
836

897

51
0

90
7

510

690

2882

690

2699

690

2462

505

529

505

651

1397

775

2408

558
520

497

534

609

609

609

791

2003
2218

578

505

2003
2265

523

523

1997
2257

487

487

578

770

770

55
7

557

2184

599

2279

528

498

527

1821

546

644

742

2174 1661

2101 1746

747 620

810

686

1133

1706

1720
1784

1821

595
572

861 572

1914 1830

1809
1472

703

923

668

811

1851

1851

1804

1689

1016

867

801

466

772

772

2040

771
694

2774

694

27
74

694

27
74

69
1

28
81

68
4

39
46

71
639

11

71
6

39
22

63
919

85

64
019

75

47
2

47
2

14
70

2100

845

2064

533

90
7

699

640

49
7

1271

786

1

2

3

4

5

6

7

8

96

147

Scenario 2000

Assignment results:

Auto volumes
Bus volumes
Walk access

Figure 25: Auto, bus and walk volumes in the CBD

24

Scenario 2000: Vehicle Miles by Link SpeedVeh. miles

mph
0 10 20 30 40 50 60

0

10000

20000

30000

Figure 26: Integrating a network plot into a diagram

Lists

After having looked at Enif’s graphic capabilities to produce network plots and diagrams, it should
not be forgotten that often text-only type output is just as important for doing the day-to-day work in
transportation planning.

This aspect is covered in Enif’s concept of network lists. A network list is a user configurable object
which displays textual and numerical information in tabular form for a set of network elements. Its
implementation relies on the same basic concepts that were already discussed earlier: attributes,
expressions, selectors, parameters and stylus. Using the “Enif terminology” which we have introduced
in the previous sections, a network list can be described as an object consisting of the following
components:
• Network element type: Defines the type of network elements that can be displayed by this list.
• Element selector: Defines the subset of network elements to be included in the list and, using the

optional iterator expression, the order in which the selected elements appear in the list.
• Column attribute list: An attribute list containing one attribute for each column of the list. Each

of these attributes is either pointing directly to one of the existing network attributes or is defined
by a column expression to be evaluated “on-the-fly” when a list value is to be displayed.

• Column formatting information: Besides the usual formatting (field width, decimal precision, align-
ment), the value field can optionally be delimited by top, bottom, left and/or right rules, and for
each column the pertinent summary information (min, max, sum, average) can be specified.

• Indexed stylus: Defines the visual appearance of each value field in the list. The stylus index is
an expression of the corresponding network element type which is evaluated for each list value.
The special constant attributes row and column can be used to make the stylus index depend
on the row and/or column index of the displayed value field. Each list value is displayed using
the resulting stylus properties by filling background, writing the value string and, finally, drawing
the activated rules around the value field.

25

• List summaries: At the end of the list, optional minimum, maximum, sum and/or average summa-
ry rows display the requested column summary information.

• Other parameters: Similar as for plots, for each list configuration a name, a description, a window
caption and an icon text can be specified.

• Optional “by-element” selector: A special variant of lists are the so called “by element”-lists.
These are lists which display a set of network elements which is determined by a related network
element, such as e.g. “O-D pairs by origin”, “transit segments by line” or “turns by intersection”.
In this case, an additional by-element selector specifies the subset and the order of the available
by-elements. The current by-element can be chosen directly from the subset or stepped through
consecutively in forward or backward direction.

The contents of a list can be sent to a printer or punched to a file. Network elements can be marked
on the list and the marked elements can be temporarily hidden or copied to the clipboard for pasting
into other applications.

Figure 27 shows an example of a screen shot of a list containing assignment results for the segments
of a particular transit line. Note the use of the stylus to produce a “zebra” list background and to
highlight the volumes of overcrowded segments.

Figure 27: Example of a list as it appears on screen

26

Preferences and Initialization File

Configuration settings which pertain to running the Enif program as such (i.e. not related to the con-
figuration of plots or lists) are handled by a configurable object we refer to as the preferences. The
preferences consist of a set of parameters which are divided into the following groups:
• General parameters containing information about the default data bank, the default startup

plot configuration or the diagnostic log file.
• Layout parameters which define the screen appearance of the Enif program.
• Font parameters which allow the customization of the fonts used by Enif.
• Stylus parameters containing the system defined styli and an open set of user defined styli.
• Network caching parameters which are used to determine which network attributes are put

into the network element’s data buffers and which are read “on-the-fly” from the EMME/2 data
bank when needed.

• Plot related parameters controlling the features of the network plane (e.g. magnifier size and
factor) and defining whether the network uses right hand or left hand traffic.

• Print parameters are used to setup the printing characteristics used for plots and lists.
• Predefined views allow the user to store and recall network windows to easily access a certain

part of the network plane by a logical name.
• Registered plot and list configurations are used to define which plot and list configurations can

be accessed directly from Enif’s “Plot” and “List” menus.

All system defined parameters are organized in a single parameter list. Separate parameter lists are
used to contain each of the following types of user defined parameters: predefined views, registered
plot configurations, registered list configurations and user defined styli. This allows each parameter
type to have its own name space, so that no conflict occurs if e.g. a predefined view uses the same
name as a registered list.

The values of all preference parameters can be saved to an initialization file, so that they can be
used as starting values for subsequent Enif sessions. By default the initialization file enif.ini is used,
but it is also possible to specify an alternate initialization file on the Enif command line using the -i
option.

Implementation

Since EMME/2 is running both on Microsoft Windows based PC and under various flavors of Unix, an
important requirement for Enif is that it, too, will be running under both types of operating environ-
ments.

This goal is accomplished by programming Enif in the C++ programming language [4] and basing
it on the commercial version of Qt[5], a C++ cross-platform GUI application framework developed
by TrollTech AB in Olso, Norway. Qt not only provides a platform independent method to access the
different windowing systems, but, in addition, it features a very powerful concept of signals and slots.
The latter are also extensively used in Enif to implement the communication and synchronization
between non-graphic objects, such as e.g. in the grouping mechanism for parameters. Another
important advantage of Qt is the fact that it is distributed as source code. This eliminates the risks of
having Enif depend on “black box” type precompiled components beyond our control.

The generic language used in Enif is English — just as is the case for EMME/2. However, Qt provides an
extensive support for internationalization which makes it possible to use Enif in any other language by
providing the proper translation files. At the moment, a French translation file is available for Enif to
demonstrate this mutli-lingual capability.

27

Conclusions

This article presented a very first look at Enif, a new software aimed at accessing existing EMME/2
data banks by means of a consistent modern graphical user interface.

The development of Enif is still in an early stage. Most of the work done so far was concentrated
on developing a broad and consistent conceptual base and implementing the corresponding basic
tools and mechanisms. Based on this, initial functionalities to provide read-only access to EMME/2
data banks for producing plots and lists have been implemented. This current implementation allows
us to demonstrate that the goals set forth at the beginning of the project can indeed be reached.

A lot of work remains to be done in order to build all the desired functionality into Enif. However,
even the limited functionality which is already implemented today —generating plots and lists— is
on its own a worth while addition to EMME/2. It will help to overcome the drawbacks of EMME/2’s
“old” graphic interface and ease the task of transforming the computational results of EMME/2 model
runs into high-quality graphical output, both for interactive work on screen and for presenting results
graphically in reports. For this reason, we intend to release a first version of Enif to all EMME/2 users as
soon as our internal tests has proven the code to be robust enough for general distribution. This version
will essentially contain the functionality presented in this article, i.e. it will allow read-only access to
EMME/2 data banks for generating plots and lists, but it will not include any possibilities to modify
the contents of the data bank. In a second phase, we then plan to gradually add network editing
features to Enif. Building transportation modeling capabilities directly into Enif may be considered a
desirable long term goal, but it is much too early now for making any commitments in this direction.

Even with the advent of Enif, the traditional EMME/2 modules will continue to keep their importance,
as they will remain responsible for all tasks associated with the actual modeling of transportation
networks. Thus, Enif should by no means be looked at as a replacement for EMME/2, but as a
—hopefully very useful— complement to EMME/2!

References

[1] Babin A., Florian M., James-Lefèbvre L., Spiess H. (1982). EMME/2: Interactive graphic method for
road and transportation planning. Transportation Research Records 866, 1-9.

[2] INRO Consultants, Inc. (1999). EMME/2 User’s Manual, Release 9.0.

[3] Spiess H. (1984). Contributions à la théorie et aux outils de planification de réseaux de trans-
port urbain. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Centre
de recherche sur les transports, Université de Montréal, Publication 382.

[4] Stroustrup B. (1999). The C++ Programming Language. Third Edition. Addison-Wesley, ISBN
0201889544.

[5] TrollTech AB (2000). QT: The Official Documentation. New Riders Publishing, ISBN 1578702097.

EMME/2TM is a registered trademark owned by INRO Consultants, Inc.
EnifTM is a trademark in the process of being registered jointly by Heinz Spiess and INRO Consultants, Inc.
QtTM is a trademark of Trolltech AS.

28

