Enif — Toward a New Interface for EMME/?2

Heinz Spiess *

October 2000

Abstract

This paper is aimed at presenting a first infroduction to Enif, a new soffware which provides a
modern graphical user interface for accessing existing EMME/2 data banks. Enif is not intended to
replace EMME/2, but to coexist with EMME/2 and complement it. The main goal of the paper is
to discuss the design of Enif and explain the technical concepts on which it is based. These are not
limited to the graphic user interface and the production of high quality graphic output, but go all the
way down to defining new mechanisms how to store and handle network data and how to provide
user configurable objects. In fact, the only thing Enif has in common with EMME/2 is that both can
be used to access the same EMME/2 data banks.

Outfput examples produced with the current pre-production implementation of Enif are included
in order to illustrate how Enif’s features can be combined in a very flexible way to produce a great
variety of network related graphic output.

Contents:

INTrOAUCTION L 2
Enif —The Basic Concepts ... 2
Network and Network Elements ..., 5
Network Attributes and Attribute Lists ...t 6
XSS ONS i 7
Element Selectorsand lterators ..ot 10
The Network Planeo i s 11
The STYIUS . 12
Parameters and Configurable Objects. ..., 14
The Mapper - Doing One ThingataTme 15
Combining Mappers to Obtain Plots ... 20
) 25
Preferences and Initialization File ..ot 27
Implementation ... i 27
CONCIUSIONS ittt 28
REfEIENCES it 28

*EMME/2 Support Center, Haldenstrasse 16, CH-2558 Aegerten, Switzerland. Email: heinz@spiess.ch

Introduction

This year, it is 20 years that the initial design of EMME/2 was decided upon. Since that time, EMME/2
has continuously been enhanced and improved, adding many new features and modeling capabil-
ities. However, the basic design described in the initial publications on EMME/2 (1, 3) is essentially sfill
valid foday. On the one hand, this proves the importance of building on a solid conceptual base -
without it, EMME/2 would never have gone this far and kept growing all the time. On the other hand,
times have changed a lot since the early eighties, and interactive computing is a totally different
thing foday than it was then. While the “age” of the basic concepts behind EMME/2 was never felt
as a hindrance to enhancing the software with new modeling features, the “age” of the graphic
subsystem of EMME/2 is evident, both to the users who have to operate the system, and to us devel-
opers who are seriously limited by the outdated technology assumptions on which EMME/2’s graphic
subset is based.

While it was possible to improve the graphic subsystem of EMME/2 in many ways over the past 20
years, these enhancements had always to be done in a way which did not affect compatibility with
older versions. While this always was (and still is) an important criterion for EMME/2 developments,
over the past years it became clear that the need for a new graphical interface cannot be satisfied
by gradual and upward compadatible enhancements of the current EMME/2 system, but that only
a completely new and radically different design would give us the necessary leeway to safisfy the
intferactive graphic expectations of the EMME/2 users now and for the years to come.

This cannot and does not mean that the traditional EMME/2 software is to be discontinued and its
functionality replaced by a new and incompatible piece of software. Rather, we foresee both the
traditional EMME/2 and the new software based on the new concepts will have to coexist for quite
some time. This is not only necessary for the continuity of the large existing EMME/2 application base,
but the huge fundus of tools and modeling capabilities that EMME/2 offers is too valuable to just throw
away and start from scratch.

Thus, the project Enif, which is presented for the first fime in this paper, is nof aimed at replacing
the fraditional EMME/2 modules in the foreseeable future. But it is aimed at providing a new way of
interfacing graphically with EMME/2 data within a reasonable short time frame and it is designed to
be solid enough to be able to grow into the future and eventually provide a functionality equivalent
(but not the same!) as does EMME/2 currently.

In this paper the concepts behind Enif are explained and they are illustrated using examples from the
current implementation, which can be used to produce graphic and list output based on EMME/2
data banks. The emphasis is put on making the reader understand the foundation on which Enif is
built. The user inferface itself, i.e. the details of the interaction between the user and Enif are not
dealt with explicitly, since a) the current implementation is not final and the external aspects may still
change and b) this paper is not infended to be a reference manual.

Enif - The Basic Concepts

When the Enif project started in the summer of 1999, its design was approached with the following
goadls in mind:
1. Provide all functional features needed within the framework of a consistent modern graphical
user interface.

2. Remain compatible with all current EMME/2 applications at the data bank level. This compati-
bility implies being able to access the data available in these data banks. It does not imply that
Enif should be able to produce identical output as does EMME/2.

3. Run with identical functionality on all platforms on which the current version of EMME/2 is run-
ning. This means that Enif must be able to run both under the Microsoft Windows family of
operating systems as well as under the various flavors of Unix supported by EMME/2.

4. Build a solid base which is strong enough, both on the conceptual level and on the implemen-
tation side, to build upon the future developments of EMME/2 for many years to come.

5. Provide useful functionality to the EMME/2 users within a reasonably short tfime frame.

In the past 15 months most effort went info the development of the general concepts and the basic
mechanisms needed for their implementation. These concepts are more important for understanding
the “philosophy” behind Enif than the details of graphical interface presented to the user on screen.

The basic design of Enif is shown in Figure 1 in the form of a block diagram. The central part of
the diagram describes the internal concepts which, as such, are not specific for the graphical user
interface, but form the abstract pilers on which Enif is built. This includes the internal representation of
the network, the attributes, the expressions and the parameters, which are the basic objects used to
build user configurable objects in Enif.

The graphical interface part of Enif is depicted on the right hand side of Figure 1. It is based on an
abstract network plane which receives the graphical information generated by a set of mappers
using an abstract drawing and a writing tool we call the stylus.

Other functionalities can be based on the foundation provided by Enif, as indicated in the upper left
corner of the block diagram. One example of this is the list generator.

The access to the EMME/2 data bank is completely modular and separated from the rest of the Enif
code. This implies that accessing network data from other sources than an EMME/2 data bank could
be achieved by simply providing the corresponding alternate network I/O modules, should this ever
be required.

Enif - General Design

List configurations Plot configurations

save load save 4 load
T | f . : -
f rocomoomao NN Parameters: Plot Configuration: Configuration
| Calculator: i - type (float, string,...) [€— " Stack Back Manager
(.) _ apper Stack:
1| List Generator: lor se_veral values Front =
1 - grouping y 3
: : ,—‘w - auto synchronisation W
i Page 1 within same group Node Attr |
1! LI NK VOLUVE SPEED ' Mapper 1
[Mapper ... :
! : 1-2 2480 15.0 g Mapper N+1 MapperN | ____________ __
1 - . - .
[gé lggg gg g Expressmns: 1 +gsert external files
[3-1 4530 18.2) — inpu!
i 3.2 920 37.2 - value providers Q@ .
1 3-5 1011 58.6 - string or numeric !
i 4-3 2502 60.1 < . X @ 1
- 5.4 2502 60 1 - single / multi valued .
1 5-6 1822 45.0 — - element selectors \J Y * . Y
- -5 0 €00 - element iterators (]]]
) L Network Plane: - display graphics and texts using a stylus
. * - receive user input and dispatch it = = |- =
Attribute Manager: Network: - generate output to other paint devices ~ —+9
- attribute storage Semi-abstract network element types n
- attribute format ‘ ‘ Display Control: [Tl]
- expression attributes .
Link Link - viewport H
‘ ‘ [- window N M
Node Node p—
Elements: Attributes: a7
1 | - pan / R
> J - output device &
3 X screen 9
2 i ; —
printer
EMME/2 Data Bank: magnifier 7 -
+ + - bounding box || L -
- standard EMME2BANK p .
- fully compatible with EMME/2 Data Bank Interface: i ‘ 8%
any existing application - read-only or read-write access — ‘ —]
- combined use of Enif - one-shot read or on-the-fly access
and traditional EMME/2 |- access to network and matrix data ‘

Figure 1: General design of Enif

In the following sections, all these fundamental building blocks of Enif will be discussed in more detail.
While reading on, it is a good idea to return back to Figure 1 from time to time. What at the beginning

might look like a bunch of empty phrases, will —hopefullyl— after having reached the end of this
paper be filled with concrete meaning and serve as a useful summary of the functionality of Enif.

In order to give an idea how Enif presents itself on the screen, a typical Enif window is shown in Figure
2. It shows the zonal productions and attractions colored according to the corresponding mode
share of the auto mode.

The main part of the Enif window shows the current view of the network plane. Located above it, the
tabbed mapper control dialogs are used to access the configurable parameters of the current plot
configuration. At the left side of the window, the view controls can be used to change the current
view or to send the current plot to the printer. A menu bar on the top gives access to the various
available tools and options, and, finally, the status bar on the very bottom of the window is used to
display transient messages.

File Options Scenarios Aftributes View Plot Lists

/Zone numbers Y Productions Y[Attractions| Y Links ' Rivers % Airport logo % Background)
-

=

7 Numeric values Shape: Mabla /| Hoffset |0 = Sca\e:l 0.4 S Value: ‘[Attractiuns] md11+md12

7 Prop. to area Alignment: Bottom N W.offset: | -4 j‘ Selector: |[centmids anly] isZaone && md11+md12=0

I Sep. value layer Text size: |12 j‘ Decimals: |0 j‘ Stylus: I. Index: ‘md11f(md11+md12)*2
wicth[10 =]

= % |
CPU Time: 471 2

Figure 2: A typical Enif window

Network and Network Elements

Since one important goal of Enif is to remain 100% compatible with existing EMME/2 application data,
the network structure is essentially given by EMME/2. However, the internal network representation is
completely different from the one used in EMME/2 (2, 3). The access and interpretation of EMME/2
network data is completely encapsulated in a separate modular network 1/O interface.

Internally all network elements are represented using a common base class. This allows the imple-
mentation of many functionalities in a uniform way, independent of the actual type of network ele-
ments. This includes functionalities such as data access, handling of network attributes, expression
evaluation and the definition of sub-networks by element selection.

Element type: Pointers: Flags:
mode next mode in sequence isAuto, isTransit, iSAuxAuto,
isAuxTransit
node next node in sequence, first outgoing isZone, isintersection
link, first incoming link
link I-node, J-node, next link with same isAccess, isEgress,
I-node, next link with same J-node, isConnector, isAuto, isTransit,
first outgoing turn, first incoming iSAuxAuto, isAuxTransit
turn

transit vehicle next transit vehicle in sequence,
transit mode

transit line next transit line in sequence, first
transit segment, transit mode

transit segment next segment of same line, transit isFirst, isMidLayover, isLast,
line, I-node, link isHidden

turn incoming link, outgoing link, next isUTurn

turn with same incoming link, next
turn with same outgoing link

zone node
origin zone
destination zone
O-D pair origin, destination

Table 1: Element type specific pointers and flags

The network element types include all those already used in EMME/2, i.e. mode, node, link, fransit
vehicle, transit line, transit sesgment and furn. In contrast to EMME/2, matrix related data is also con-
sidered part of the generalized network. This leads to the additional network element types zone,
origin, destination and O-D pair.

While most data handling can be implemented at the abstract network element level, all network
specific aspects have to be implemented at the level of the specific element type, e.g. finding the
outgoing or incoming links of a node or following the segments along the itinerary of a transit line. This
is achieved by associating with each network element type a type specific set of pointers to other
network elements, as well as a set of flags. These are shown in Table 1.

The data associated with an individual network element consists of three parts:
e atype independent part containing index and flag information;

e a mandatory type dependent part containing all structural data necessary for the correspond-
ing element type (this part essentially consists of generic element identifiers and type specific
pointers);

e an optional, user configurable and application specific part containing information which needs
to be accessed efficiently.

In Enif, a network is defined as the collection of its network elements, an attribute list for each element
type (see below) and some auxiliary data, such as titles and element counts.

Network Attributes and Attribute Lists

One of the most basic and most important functionalities when dealing with large transportation
networks is to provide a flexible and efficient way of accessing aftribute values associated with net-
work elements. In Enif, this is implemented using a very generalized approach consisting of network
attributes which are structured into attribute lists.

Enif’s concept of network attribute is much broader than the one used in EMME/2. While in EMME/2
a network attribute always implies a value which is physically stored in the EMME/2 data bank, in Enif
the term attribute covers any kind of predefined value provider for the network elements of a specific

type.

Network attributes are characterized by the following properties:
e Element type: Defines the type of network elements for which this attrioute can provide values.

e Value type: Defines the type of value which is provided by this attribute, such as boolean, inte-
ger, floating point, string or poinfer to another network element.

e Data source: Aftribute values may be obtained in many different ways:
- directly from the information stored within the network element’s data buffer;

- using “on-the-fly” access by calling the EMME/2 data bank I/O module whenever a value
is needed;

- by indirect access to an attribute of another network element via a pointer attribute;

- by calling a type specific network element function;

- by providing the same constant value for all network elements;

- by evaluating an expression based on the other attributes of the same element (see below).

e Format: Information on the default formatting of the attribute values, such as field width, decimal
precision and alignment.

e Protection and validation: Attributes can be declared read-only (e.g. assignment results) or
have write permission so that their values may be modified. For writable numerical attributes,
the allowed value range may be defined by lower and upper bounds, as well as a default value
which is used to initialize newly created elements.

A special data caching mechanism is provided which allows the user to define which aftributes
should be cached, i.e. stored directly in the data buffer of each network element, instead of reading
it on-the-fly from the external data bank whenever needed.

Obtaining an attribute value for a specific network element is done simply by calling the correspond-
ing method of the attribute with the pointer to the network element as argument.

Constant aftributes are attributes which are not associated with a particular network element. They
can be evaluated for all network element types (or even outside the context of network elements
altogether) and will always return the same constant value.

Attributes of the same element type are combined into atfribute lists. The network contains one
attribute list for the attributes of each element type, and an additional one for constant attributes
associated with the network. The latter includes constants such as the scenario number, the scenario
title, mode masks and the scalars defined in the data bank.

Additional “private” attribute lists may be created when needed, e.g. in the context of a list or a
specific mapper.

Expressions

In Enif, most functionalities which access network data are not implemented by accessing network
attributes directly, as is the case in EMME/2. Rather, wherever possible, the available functionalities
(such as selecting subnetworks, plotting or listing network related data) are based on expressions.

In general, an expression is made up of an arbitrary combination of operands, operators and calls
to intrinsic functions, using syntax rules compatible with those used by the expressions in EMME/2. In
practice, however, an expression is offen as simple as a single constant value (e.g. 1) or an attribute
name (e.g. “volau “).

In contrast to EMME/2, where expressions are limited to handle exclusively numerical values, Enif
expressions support both numerical and string values. A strict distinction is made between numericall
and string values. Each operator has well defined operand types and each intrinsic function requires
its arguments to be of the specified types. Special intrinsic functions can be used to convert strings
to numbers and vice versa, should this become necessary.

Each operand of an expression must correspond to one of the following:
e O numeric value (e.g. 0, 3.14159),
a constant string enclosed in double quotes (e.g. "abc"),
e O numeric or string attribute from one of the associated attribute lists (e.g. volau),
a valid subexpression enclosed in parentheses (e.g. (volau+volad)),
the result of a call fo an intfrinsic function (e.g. max(speed,60)

A list of all available operators is shown in Table 2, grouped in the order of increasing operator prece-
dence. It also shows the required operand types for each operator, as well as the type of the result
of the operation. All operators are binary operators, with the exception of the “+” and *- “ operators;
these can be used as unary operators at the beginning of subexpressions.

Note that all logical and comparison operators return O for FALSE and 1 for TRUE. Operands of logical
operators are assumed TRUE for all non-zero values, FALSE for zero values.

The available intrinsic functions are shown in Table 3. Note that some functions allow for a variable
number of arguments. For technical reasons, the number of arguments for these functions is currently
limited to a maximum of 30. Two noteworthy functions of this type are the lookup() and the which()
functions. The function lookup(i, v1,ve,vs,...) Takes an index i as first argument and returns v;, the
i-th of the following values. The function which(v, vy, vs,v3,...) Takes a value v as first argument and
compares it with the following values v;. It returns the index ¢ of the first match v = v; found, or O
otherwise.

In addition o operands and operators, an expression may also contain comments enclosed in brack-
ets, e.g. "[auto network without connectors] isAuto && not(isConnector) “. This is useful to
explain the meaning of an expression to those users who are not (yet) Enif experts.

Depending on the context, an expression may allow only a numerical result or also accepts a string
result. But even expressions which are limited to numerical results may include string valued subex-
pressions.

In certain contexts it is possible to specify an expression returning more than a single value. This is
done by simply specifying several subexpressions, separated by commas. The maximum allowed
number of expressions is given by the particular context. E.g. the expression

volau-volad, volad
provides two values, the auto volumes minus the additional volumes as first value and the additional
volumes as second value.

A special case is the empty expression, i.e. an expression with no operands at all. Empty expression
will always return a zero value as resullt,

While the expressions in Enif are much more powerful than those in EMME/2, they remain essential-
ly compatible with EMME/2 expressions. All attributes, operators and infrinsic functions which are

‘ Operator: Description: Operand and result types:
|| or .or. logical OR num|| num — num
&& or .and. logical AND num&&um — num

.XOr. logical XOR num.xor. num — num
I= or .ne. not equal num!= num — num
< or .t less than num<num — num
<= or .le. less than or equal num<=num — num
== or .eq. equal num==num — num
>= or .ge. greater or equal num>=num — num
> or .gt. greater than num>num — num

I= lexically not equal str I=str — num
< lexically less than str <str — num
<= lexically less than or equal str <=str — num
== lexically equal str ==str — num
> lexically greater than str >str — num
>= lexically greater or equal str >=str — num
~ string matched by regular expression str ~str — num
I~ string not matched by regular expression str I~str — num
& bitwise AND num&num — num
+ add num-+num — num
+ string concatenation str +str — str
- subtract num- num — num
.addle add if less or equal to zero num.addle. num — num
.max. maximum num.max. num — num
.min minimum num.min. num — num
pdfum. add and truncate when negative num.pdfum. num — num
| bitwise OR num| num — num
* multiply num*num — num
.mod. modulo num.mod. num — num
/ divide num/ num — num
N oor ** power num*num — num

Table 2: Operators in expressions

available in EMME/2 are also available in Enif.

Expressions are always stored as normal strings, which also implies that they can easily be saved 1o files
and read back when needed. However, when expressions are actually used to provide values, their
string representation is automatically compiled into an efficient internal RPN token list. Special cases,
such as empty expressions, constants or expressions consisting of a single attribute are recognized
as such, so that they can be handled with less overhead. These features allow for a very efficient
evaluation of the same expression for large numbers of network elements.

Since the user can enter and modify expressions at any time, it may happen that he or she enters
an invalid expression. For this reason, expressions entered or modified interactively by the user are
compiled immediately after the return key is pressed. If the expression is found to be invalid, the
background of the expression field becomes red (or to be more precise: changes to a special color
which is configurable in the user preferences) and the cursor is moved to the place in the expression
where the error was detected. If this is not enough to reveal the cause of the error to the user, he can
also check on the diagnostic window, where he will find a detailed description of the error.

‘ Function:

Description:

Argument and result types:

abs()
Atan()
atan()
Atan2()
atan2()
ceil()
Cos()
cos()
erf()
exp()
floor()
get()
if()
if()
index()
int()
justify()
left()
length()
lgam()
In()
log10()
lookup()
lookup()
lower()
match()
max()
min()
nint()
not()
number()
put()
puti()
rand()
right()
sign()
Sin()
sin()
sqrt()
string()
string()
upper()
which()
which()

absolute value

arc tangent (degrees)

arc tangent (radians)

arc tangent (degrees)

arc tangent (radians)

ceiling function

cosine function (degrees)

cosine function (radians)
Gaussian error function
exponential function

floor function

return corresponding stack value
if-then-else on string values
if-then-else on numerical values
index of first substring

truncate to integer

left/right justify string

left substring

string length

logarithm of absolute gamma function
natural logarithm

base-10 logarithm

text lookup

numeric lookup

convert string to lower case
string matching

maximum

minimum

round to nearest integer

logical NOT

convert string to number

put argument on stack

define stack index for next put()
random value between O and argument
right substring

sign function

sine function (degrees)

sine function (radians)

square root

convert number to string

convert number to string with decimals
convert string to upper case
which among string arguments
which among numerical arguments

abs(num)
Atan(num)
atan(num)
Atan2(num, num)
atan2(num, num)
ceil(num)
Cos(hum)
cos(num)
erf(num)
exp(num)
floor(num)
get(num)
if(num, str , str)
if(num, num, num)
index(str ,str)
int(num)
justify(str , num)
left(str , num)
length(str)
lgam(num)
In(num)
log10(num)
lookup(num, str ,str ,...)
lookup(num, num, num, ...
lower(str
match(str , str
max(nhum, num, num, ...
min(num, num, num, ...)
nint(num)
not(num)
number(str)
put(num)
puti(num)
rand(num)
right(str , num)
sign(num)
Sin(num)
sin(num)
sgrt(num)
string(num)
string(num, num)
upper(str)
which(str ,str ,str ,..))
which(num, num, num, ...)

)
)
)
)

!

L e e e

num
num
num
num
num
num
num
num
num
num
num
num
str

num
num
num
str

str

num
num
num
num
str

num
str

num
num
num
num
num
num
num
num
num
str

num
num
num
num
str

str

str

num
num

Table 3: Intrinsic functions in expressions

Element Selectors and Iterators

In EMME/2, sub-network selection is implemented by a simple mechanism, in which a set of selection
clauses is specified by the user, each clause being composed of an attribute and a corresponding
value range. Network elements are selected if they satisfy the combination of all selection clauses.

In Enif, all network element selections are based on expressions. A selector is an expression which is
used to determine which elements of a given type are used in a certain functionality. The expression is
evaluated for each element of the given type and if the expression result is non-zero (or a non-empty
string in the case of a string valued expression) the element is selected, whereas elements yielding a
zero numeric value (or an empty string) are not selected. An exception 1o this rule is if the selection
expression is empty, in which case dll elements will be selected (this is different from EMME/2 where a
selection without any clauses implied an empty set of network elements). In order to set a selector to
select no elements, it suffices to set the selector expression explicitly to 0.

In order to allow an efficient handling of subsets, the selector expression is only evaluated once for
each network element and the results are used to build a list of pointers o the selected elements
which can then be traversed very efficiently for as many times as needed without any additional
computational overhead.

[C) Node selector: isZone, xi > [d) Node selector: isZone, -sqrt(xi’\2+yi"2)J

Figure 3: Same node value plot using four different iterator expressions

While the element selection is used to decide which elements o use or not use in a certain function-
ality, it does not imply any particular order in which the elements are processed. In EMME/2, network
elements are always processed in the sequence of ascending identifiers, i.e. in the same order they

10

are stored in the data bank. In Enif, it is possible to define the order in which the selected elements
of a given type are processed by means of a so called iterator expression. If an iterator expression
is specified, the selected elements are processed in the order of increasing values of the iterator ex-
pression (or ascending collating sequence for string valued expressions). If No iterator expression is
specified, the standard sequence following increasing element identifiers is used by default.

Thus, in Enif the concept of element selection always includes the option of also specifying the pro-
cessing order of the selected elements. This is done by allowing the selector expression to provide the
iterator value as an optional second subexpression. E.g. using the link selector “volau>1000, -volau

in a link list will select all links having an auto volume larger than 1000 and will sort the list to have the
largest volumes first,

While the use of iterator expressions is evident for lists, it has also important implications when display-
ing overlapping graphic elements: elements drawn later will hide those elements drawn earlier at the
same position. This is illustrated in Figure 3. It contains four fimes the same node value plot showing the
attractions (stored in destination matrix md9 as proportional circles for the subset of nodes which cor-
respond to zones (element selection: isZone). The only difference between the plots is the iterator
expression. The following processing orders are shown: a) according to increasing attractions (md9),
b) decreasing attractions (-md9), c) from left to right (xi) and d) from outside toward the network
center (-sqrt(xi*2+yi*2) , The origin of the coordinate system happens to be in the city center).

The Network Plane

All concepts described so far dealt with the internal representation of network data and were not
related at all fo the graphical user interface provided by Enif. So let’s now turn our attention to the
graphic display of Enif and the basic concepts behind it.

In Enif the term network plane is used to denote an abstract functionality which provides the possibility
to display arbitrary drawings (usually depicting transportation networks, hence the name network
plane) and texts on the screen or on other output devices.

The network plane only offers the necessary infrastructure to display drawings and texts. It does,
however, not generate any of those itself. The “clients” which are using the services of the network
plane are the mappers. These are described in a separate section below.

Without going into foo many fechnical and implementational details, here is a list of the services
provided by the network plane:

e The network plane itself, an abstract surface on which drawing and texts can be generated
using a well defined set of drawing and writing functions.

e The network plane window which provides an on-screen view of all or part of the network plane.

e A legend window, in which addifional information describing the parameters used to create
the plot are displayed for documentation and reference.

e A magnifier feature which can display a part of the current view at a magnified scale.

e A mechanism which obtains the bounding box of each currently defined mapper (i.e. the coor-
dinate rectangle which bounds the region in which the mapper wants to display its information)
and allows the mappers to update this information whenever it changes.

e Coordinate fransformations from user defined network coordinates to screen coordinates and
vice versa.

e A view conftrol system which provides all necessary facilities to define and change the view,
i.e. the part of the network plane which is currently visible in the network plane window. This
implies all the necessary infrastructure and conftrols to allow zooming, panning. scrolling of the
network window, as well as accessing previous or predefined windows or returning to the full
view window.

e A view updating mechanism which will inform the clients when a new part of the network plane
becomes visible and needs to be (re-)drawn.

11

e A system to dispafch interactive user inpuf (mouse events and key strokes) to either the view
control system or to the active input mapper.

e A print facility which sends the current plot to be output on a printer — either the content of the
entire network plane or only the current view.

The Stylus

Generating even the most elaborate plot can finally be reduced to the following three simple basic
tasks: drawing of lines, filling of regions and writing of texts. Let’s now look at each of these tasks and
see what display properties are associated with each of them:

e Outlines are drawn with a pen which is defined by its color, the pen width and a line pattern.
e Regions are filled in a given color using a certain fill style.

e Texts are displayed in a specified color using a font from a certain family in a specified size and
optional font attributes, such as bold, italic or underlined.

General purpose graphic programs would normally require the specification of these display prop-
erfies separately and independently for each single graphic element. However, when displaying
transportation networks there are too many network elements, rendering it neither practical nor effi-
cient to have to deal with each of them individually. Thus, it is crucial fo conceptualize the graphic
display properties in a way which allows a unified specification for large sets of network elements, but
yet is flexible enough to customize plots to cover all (or at least most) needs.

In this spirit, all graphic drawing and writing in Enif is done by a versatile "all-in-one” type tool we shalll
call a stylus.

A simple stylus consists of the specification of one set of the following display properties:

Pen color as a full 24-bit RGB color specification;

Pen pattern as one of the following: solid line, dashed, dotted, dash-dot, dash-dot-dot, no pen;

Pen width as a value between 0 and 16 (0 denoting the smallest possible pen width of the output
device);

Fill color as a full 24-bit RGB color specification;

Fill style as one of the following: solid fill, 94% fill, 88% fill, 63% fill, 50% fill, 37% fill, 12% fill, 6% fill, horizontal
lines, vertical lines, cross hatch, diagonal up, diagonal down, diagonal cross, no filling;

Text color as a full 24-bit RGB color specification;

Text aftribute as one of the following: normal, bold, italic, underline;

Text size factor as one of the following: 50%, 64%, 80%. 100% (normal size), 120%, 150%, 200%, no text;

Text font family as one of the following: default, sans serif, serif, typewriter, decorative, user 1, user 2,
user 3 (the corresponding font family names which are actually used can be defined in the user
preferences);

Figure 4 illustrates the above choices for the non-color properties of a simple stylus. If a stylus is used in
a particular way which does not make use of some of the properties (such as e.g. for a background
which has neither an outline nor any text associated), they are left unspecified. On the other hand it is
always possible to configure a stylus to selectively suppress outline, filling or text contents, by selecting
the properties no pen, no filling and/or no text.

Note that the above display properties do not determine the character size of the text, they merely
provide a relative text size factor. The actual text size is obtained by multiplying a text size parameter
(provided by the mapper as a separate parameter) by this factor. This allows changing the overalll
size of the fexts very easily via one single parameter, while maintaining the relative sizes specified in
the used styli.

An indexed stylus consists of the specification of several sets of these display properties. An sequential
index is associated with each set, starting with index 0. When used with a particular index value, it

12

a) | Text| Text| Text: |Text| | Text! Text

31111 Sy e

d) | Text| | Text| | Text| | Text

) | Text Text | | Text | |Text| [Text [@X

f) |Text| |Text| | Text| [Text| |Jext| |Fext| |Text| | Text

Figure 4: Non-color properties of a simple stylus: a) pen pattern, b) pen width, c) fill pattern, d) text
attribute, e) text size factor, f) text font family

provides for a convenient way to specify a systematic variation of the display properties and, thus,
can be looked at as a generalization of the color index used in EMME/2.

Index values outside the range of defined value sets are always referred to either the first or the last
set.

As the index values are not limited to integer values, but may assume any floating point value, inter-
polation properties for pen, fill and text operations are associated with each specified stylus property
set. Each interpolation property can be set to one of the following: round to next lower, round to next
higher, round to nearest and linear interpolation. This information is used to determine which set of
properties to use for fractional index values.

Linear interpolation implies that an interpolated color is used made up from the interpolated red,
green and blue components of the colors specified in the next lower and next higher property sets.
In case of a pen interpolation, the pen width is also intferpolated in the same way. For all other (non-
inferpolatable) properties, the setting “linear interpolation” behaves the same as “round to nearest”.

Indexed styli provide a very powerful tool to translate numerical values into discrete or continuous
color sequences. As we shall see later, when looking at network plots, the index values are offen
provided by evaluating the so called stylus index expression.

The example in Figure § illustrates how to use an indexed stylus for generating gray-scale displays. In
this example, an index value of zero corresponds to a black filling, a value of 1 1o a white filling, values
in between to the corresponding level of gray. In order to visually differentiate text and outline from
the filling, they are colored white for fillings in black or dark gray, and black for fillings in light gray or
white. The stylus used to produce Figure 5 uses only two indices, 0 and 1, which have the following
properties:

Property: Set C: Set 1.
Pen color: white black
Pen interpolation nearest *
Fill color: black white
Fill interpolation: linear *
Text color: white black

*

Text interpolation: nearest

(*: not important, as the interpolation property of the last set is never used)

13

061 0.7 0.8 0.9 1.0

mEmEm

Figure 5: Gray-scale interpolation with an indexed stylus

A stylus can always be modified interactively by pushing the corresponding stylus butfon. This opens
a popup menu which, depending on the context, provides options for all allowed modifications,
such as changing of the properties, adding or removing indices, reversing the indices or copy-
ing/exchanging colors. Once a complex stylus is configured, it is also possible o associate a hame
with it and store it as a predefined stylus so that it can be recalled later on, whenever the same stylus
configuration is needed again. The set of predefined styli becomes part of the user preferences.

Parameters and Configurable Objects

Enif is based to a large extent on user configurable objects, such as mappers, plofts, lists or preferences
(which are all to be explained later). The mechanism which provides configurability is implemented
via a special class of objects called parameters.

A parameter is an object which is defined by the following properties:

e |tis created and owned by a configurable object (owner)

¢ It has a name which is uniqgue among the parameters belonging to the same owner.

e Itis used to store one or several values of a given type, such as flags, integer value, floatfing point
value, string. text, expression, selector, stylus or bounding box.

¢ If more than one value is stored in the same parameter, the different values are identified by a
sequential index starting at 0.

e |t emits a public signal whenever the parameter’s value changes. This signal can be caught
by other objects which need to be notified in order to adjust themselves to the new parameter
value.

¢ If an optional group specification is defined for the parameter, it will automatically synchronize its
values with all other parameters within the same scope which share the same group information.

e It can read from or write to an external file its value(s) and optional group information using a
standard format.

At first sight these parameter properties may seem rather abstract. But as we shall see further on, it is
this parameter concept which is responsible in large part for the flexibility of Enif.

In addition to storing simple numerical or string values, parameters are also used to store much more
complex structures, such as the expressions, the selectors and the styli described in the previous
sections. In the case of a stylus, each value corresponds to one complete set of display properties,
so that an indexed stylus is implemented simply as a multi-valued parameter of the type stylus. The
actual number of values of a parameter is determined at run time and can be changed dynamically.

By assigning the same group name to several parameters, the user can create logical groups of
parameters, which automatically synchronize their values. So subsequently the user only needs to
change the value of any one of the parameter in the group; all others will follow the change au-
tomatically. The usefulness of this grouping feature will become easier to understand later on when
discussing the automatic synchronization of parameters between collaborating mappers.

Configurable objects organize their parameters in one or more parameter lists. Within a parameter
list, the names of the parameters must always be unique.

14

The Mapper - Doing One Thing at a Time

A mapper is a user configurable object which knows how to graphically display one type of infor-
mation in certain way. Taken alone, one single mapper will only be able to provide a very limited
graphic display. As we shall see later on, the strength of the mappers does not lie in their stand-alone
use, but in combining them to generate complex and flexible displays.

As each type of mapper is implemented individually, there is conceptually no limit to the number of
different mappers nor the type of task they can perform. However, all mappers must adhere to the
same rules when it comes to interfacing with the network plane.

A mapper consists of the following components, of which some are mandatory and some optional:
e A set of parameters which defines all user configurable aspects of the mapper. One of these
parameters always contains a set of flags, some of them being generic (defined in the same
way for all mappers) and some may be specific for the given mapper type. The parameters
normally include at least one stylus which is used to define the display properties of the output
generated by this mapper. In addition to simple numerical values, such as text size, link offset or
aftribute scale, the parameters often also include network element selectors and expressions.

e A network plane painting routine which can be called by the network plane whenever a part
of the network plane must be displayed.

e A mapper control dialog which allows the user to interactively configure the mapper’s parame-
ters, or af least the more important ones. The visual appearance of the mapper control dialog is
standardized and parameters of the same type always use the same standardized input fields.

e A bounding box specifying the rectangle on the network plane which this mapper will provide
display output for.

e An optional input event handler which, if available and enabled, causes the mapper to take
over mouse and keyboard, allowing the user to interact with the mapper directly on the network
plane. Mappers providing this feature are called input mappers.

e An optional legend provider which sends legend information to the legend window.

e An optional tip provider which will display context sensitive fips (also known as “balloon mes-
sages”) when the mouse rests on an object displayed by this mapper on the network plane
view,

e An optional set of active network elements. This set of elements is usually defined by the map-
per’s selector(s). If available and enabled, this feature allows other mappers to identify the
active network elements via special flag attributes (is*Active), and, e.g., to use this informa-
tion in their own selector.

Besides the above components, a mapper is free to access other, usually external resources. In
parficular, mappers may access external files, e.g. o read in objects to be displayed on the network
plane, such as annotations, bit-mapped images or polygons.

Each mapper provides the following generic flags to enable or disable the corresponding services
provided by the network plane:

Flag: Enables/disables the following feature:

Control Visibility of mapper control dialog

Screen Mapper displays information on network plane view on screen

Printer Mapper displays information on printed output

Magnifier Mapper display is visible on magnifier

Legend Legend information is written into the legend window

Input Mapper takes over mouse and keyboard events when it becomes active
Bounding Box Mapper’'s bounding box is used to compute the full view bounding box

of the network plane
Active Selection Mapper’'s active elements will be made accessible to other mappers

Since the output of each mapper can be controlled individually to enable or disable graphic output
to screen, printer and magnifier, it is possible to design plot configurations which appear differently

15

on the different output devices. This has some interesting applications:

e Certain graphic items, such as e.g. a colored background, which are nice to see on the screen,
but have negative effects when being printed (bad readability, increased consumption of ink
or toner) may be disabled specifically for the printouts.

e Certain small displayed items (e.g. tiny texts), which are readable only on the printer and the
magnifier (since these provide a higher resolution) may be disabled on the normal screen dis-
play.

e The magnifier feature is not limited to display the same information simply bigger, but may al-
SO be used to display additional informnation or even to instantaneously display a completely
different view of the same objects.

An active input mapper, which receives the mouse and keyboard events occurring on the network
plane, is visually distinguished by a different background color of the mapper control dialog. This
color is user configurable. In the examples shown further down, a light green background is used for
input mappers, instead of the default gray background for non-input mappers.

As this paper is not meant as a reference manual, there is no point going into the details of each of
the mapper types currently available in Enif. Also, the currently implemented mappers are essentially
limited to output-only mappers. There are a few network editing mappers which are sfill in their very
early experimental phase and not of any practical use yet.

Thus, we shall limit the presentation of specific mapper types to simply illustrate some of them by
means of depicting an example of their configuration in the control dialog and a small stripe of the
network plane output generated using this configuration:

Figure: Mapper: Description:

Fig.6 Background Paints the background either in a constant color or using a filed bit-mapped
image.

Fig.7 Grid Generates a coordinate grid using a specified grid distance.

Fig.8 Image Displays a bit-mapped image file at a certain position scaled to a certain

size. Many different graphic file formats (such as JPEG, PNG, TIFF, ...) are
supported. The example shows a scanned image of a city map.

Fig.9 Annotation One or several EMME/2 annotation files are displayed.

Fig. 10 Node Box Draws node boxes of a specified size and optionally writes the node numbers
or node labels intfo them.

Fig. 11 Node Value Evaluates one or several node values and represents them as a proportional-
ly sized symbol and/or a text string. The example shows initial boardings and
final alightings at transit stops.

Fig. 12 Node Polygon Reads a file containing polygons and displays them. An indexed stylus can
be used to color them according to arbitrary node characteristics. Optional
node values can be evaluated and displayed either at the corresponding
node positions or at the center of gravity of the polygons.

Fig. 13 Link Base Draw link bases consisting of an arbitrary combination of a link bar, an I-node
circle and a J-node circle.

Fig. 14 Link Value Evaluates a link value and displays it numerically and/or as a proportional
bar.

Fig. 15 Transit Line Displays transit line itineraries and optionally annotates them with segment

and/or stop values.

Fig. 16 Segment Value Evaluates fransit segment values, aggregates them to link values and dis-
plays these on the links as numeric values and/or as a proportional link bar.

Fig. 17 Intersection Draws infersections and displays turn values as proportional width turns.

Fig. 18 Shortest Path Computes shortest paths from or to one or several root nodes and displays
the corresponding trees.

Fig. 19 Diagram Several mappers are available to compute and display scattergrams and
histograms for the various network element types. The example shown con-
tains a link histogram with the distribution of vehicle miles by link speed.

16

.

Figure 6: Background Mapper

Figure 7: Grid Mapper

--

e e

Figﬁr 8:ége Maper‘ h

= lannotr eoron annoz [

99

Figure 9: Annotation Mapper

17

Mode box

I Mode boxes Width: |32 =i

7 Mode numbers Height: |14 i‘ 'Selector:|
_| Mode labels Text size: |10 i{ Stylus:

Offset; |0 ﬂ

1= [l=

Index: |isZone

767 [— 510 —
768 773 785 811
— [207] _
-775
%
743 772 e L
779 B
0 =
726 736 778 167
727 S20 782 166

Figure 10: Node Box Mapper

Mode value

_| Mumeric values Shape: Pie 7| Hoffset |0 i‘ Scale: D.D4§I Values: |[initial hoardings, final alightings] Inboa,fiall I
7 Prop. to area Alignment; Center ¥ S offset: |0 i‘ Selector: |ﬂali+inbua>m _/

_| Sep. value layer Text size: |10 i{ Decimals: |0 ﬁ Stylus: - Index;| ok
widihi[10 2]

e —— e

- @ wr° -

Figure 11: Node Value Mapper

Mode polygon

7 Draw Polygons H.oﬁ'se't:lﬂ j MNode Ualué:'|”Znne "+id, "carown="+stringimo3,2)

I Mode values A .offset: |0 i‘ Selector: |[centrmds only] isZane]

7 Center of gravity Text size: |18 ﬁ Stylus: \ndex:._‘[caruwn: 1976 autos per worker] mo3

_| Sep. value layer Decimals: |2 j‘_Pulygonﬁie: Browse ||winnipeg‘pul
| _i | xl

Zone 107
carown=0.75

Zone 101
carown=1.00

Zone 108
carown=0.70

Zone 99
carown=0.62

Figure 12: Node Polygon Mapper

7 Link base Offset: |4 =

7 |-node circle Selectar; | isAutosConnectar i
7" J-node circle Stylus: IIndex: ‘isCunnectorI
,_i F'illing on fop

Figure 13: Link Base Mapper

18

I7 Link bars Cffset: 1 j Scale: 100 ?1' Value: |u0\au

-

7 Mumeric values Text size: |8 = Selector: |[aut0 network] isAuta,isConnector]

| Incremental offset Decimals: |0 i'I Stylus: -:| Index: |isConnector

7 Walues on top of bar

Transit line

_| Display line names Text size: [10 Al Link offset: |1 A Segment value: |iff segnosee,"v="+string(valtr,03ling)
¥ =i £

7 Show line ends Text offset |6 ﬂ Seg. offset: (12 ﬂ Line selector: |number(|ine)>38 && numberiline)<53
7 Show transit stops Decimals: [0 ﬂ Pen width: | 3 ‘=i Link selector: | isTransit

Stop size: |5 ﬁ'_ Stylus: ml Indes: |@c0|0r1
- ——

ol

Figure 15: Transit Line Mapper

Segment value

7 Link bars Offset; |0 j] 'Sca\e:l 50 %I Value: |[transit segment volume] voltr

_1 Numeric values Text size: |10 i‘ Link selector: |

-

_| Incremental offset Decimals: |0 ot Line selector: | mdesc==“bus'I

_| Walues on top of bar Index:

Figure 16: Transit Segment Value Mapper

Intersection

I Intersection circles Offset: |2 i‘ Scale:.l

17 Use spline curves Diameter: | 100 ;I | Selector: |i>EDD

75 él Walue: |[autu volumes on turns] pvolau

| Automatic sizing Text size: |10 = Turns: Index: |[calored by turning angle] ii{angle<—15,0,f(angle>15,2,1)]
|

S o

Figure 17: Intersection Mapper

19

Shortest path

T Paths from nodes Footis]: |i==777 || i==743 7 Link cost: |timau I
| Paths to nodes Leaves: |[regu\ar nodes] not(isZone) £ Turn cost: | N
1 Use turns Cffset: |4 j‘ Save: |ui1 Link selector: |[autu netwaork] isAuto %
I hlode circles Decimals: |2 ﬁ Stylus: _l Index: |i==?77

L

Figure 18: Shortest Path Mapper

Link Histogram IBackg'rouhd |

Auto X # desc: |mph X range: |EIJEUJ1 »ovalue: |int[speedau)
Auto Y Ydesc:lvehm Yrange:lDJEUDDD W value: |v0|au*length
Auto Pos Text size: |8 ii Frame: M Selector: |[auto network no connectors] isAuto 8.8 not(isConnector)]
Title: | Distribution of Vehicle Miles by Speed Bars: !I

Distribution of Vehicle Miles by Speed

ooooo

ooooo

ooooo

Figure 19: Diagram Mapper

Note that the above list of mapper types is by no means complete. It just shows those mappers
which have already reached a stage of development which is close to production level. Some
additional mappers are already under development now and we have dlready many more ideas for
new mappers 1o be developed in the future.

Combining Mappers to Obtain Plots

Now that we have looked at the mappers individually, it is fime to combine them to the final product
— the plot.

This is done by the creation of a mapper stack, which is an ordered list of configured mappers that
are called one by one to generate the contents of the plot on the network plane. The mapper
control dialogs of these mappers (except for those whose control windows are disabled by the cor-
responding mapper flag) are arranged in the form of a tabbed dialog, where the tabs are arranged
from right to left, having the first drawn mapper (background) on the right, the last (foreground) on
the left. This is illustrated in Figure 20, which combines some of the mappers taken from the examples
of the previous section, in the following order:

e Background mapper from Figure 6

e Image mapper showing a scanned street map from Figure 8

e Link base mapper showing the base network from Figure 13

e Node value mapper showing initial boardings and final alightings from Figure 11

The parameters of a mapper can be accessed by clicking on the mapper’s tab, which causes the
corresponding mapper control dialog to be displayed. The mapper whose control dialog is currently

20

MNode value ‘ l Image | Background |

7 Link base Offset: |4 j‘
7 I-node circle Selector: ‘isAthisConnector 1|
7 J-node circle Stylus: |Index: |i5C0nnect0r _’(l

_| Filling on top

NS Pl 4 Yy 1‘: -. .';'.
\»EJ‘ T 5 g i : 3 : L

Figure 20: Combined output of several mappefé

displayed, is called the active mapper. If this mapper happens to be an input mapper with its input
flag enabled, it will take over the control of the mouse and keyboard events which occur on the
network plane.

The parameter grouping mechanism, which was presented earlier, is an important feature when
combining mappers. As each mapper has its own set of parameters, when combining several map-
pers to a plot, often some of these parameters correspond to the same logical value. E.g. the offset
of alink value bar normally corresponds to the offset used for the link base, or, when displaying several
volumes in a multi-layer band width plot, the same scale is usually used for all of them. Without an
automatic synchronization of these values between the different mappers, the user would be obliged
to change all these value separately for each mapper — which might become quite cumbersome,
even for simple plofs.

The parameter grouping allows associating an optional group name with each parameter. Subse-
quently, when a parameter value in one mapper is changed, the change is signaled to all other
mappers, which in turn propagate the signal to their own parameter list, causing parameters with the
same group name (and compatible value type) to be updated.

MNode box | Links | Standard lines | Express lines

7 Link bars Offset: |3 _—:JI Scale: 50 %I Yalue: |[transit segment volume] voltr jl
7 Mumeric values Text size: |6 j‘ Link selector: |[transit network] isTransit jl
| Incremental offset Decimals: |0 ﬁ Line selector: |[express lines] line~"g" il

Stylus: | ’

Incex: |

| Walues on top of bar 0
981

916

966

03

948
1020
1019

937 1006

980

931
967

1007

917 947

938 1017

901 1008

\
918

898]

Figure 21:

900

968

919 946

=
Transit volumes for express and standard busses

An example using parameter grouping is illustrated in Figure 21. This plot is defined as the combino-
tion of five mappers (from back to front): simple white background mapper with its control dialog
disabled, transit segment value mapper for the volumes of the express bus lines, fransit segment val-

21

ue mapper for the volumes of the standard bus lines, link base mapper and node box mapper. The
following parameter groupings are used in this plot configuration:

text size for express and standard bus volumes

e number of decimals for express and standard bus volumes
e scale for express and standard bus volumes

e link offset of link base and express bus volumes

e link selector of link base, standard and express bus volumes

e stylus for express and standard bus volumes (express bus volumes use index 0, standard bus
volumes use index 1)

With this grouping. the user can change any of the above parameters for any one of the applicable
mappers and the other parameters in the same group will follow the change automatically.

A mapper confrol manager implements all the functionality needed to create and edit the mapper
stack. It provides the following operations:

e add a new (unconfigured) mapper to the mapper stack

e delete a mapper from the stack

e duplicate an existing mapper including its complete configuration

e change a mapper’s position within the stack by moving it up or down
e set or unset the generic flags of a mapper

e edit a mapper’s parameter values and/or group specifications

e read one or several configured mappers from a configuration file and include them into the
stack

A plot configuration (or often just short “plot”) is defined by a stack of fully configured mappers
and some additional parameters related directly to the plot, such as plot flags, name, description,
caption and icon text and the name of the active mapper.

Note that a plot configuration is not directly dependent on a particular EMME/2 application or scen-
ario, but can be used with any network. When a new network is loaded, e.g. after switching to a
different scenario, the mappers automatically resynchronize their network dependent parameters.
Of course, if mappers access user defined network attributes, these have to be defined in the new
network, otherwise the expressions will be signaled as invalid.

The current plot configuration can be saved to a file and reloaded again later on, whenever the user
wishes to produce the same type of plot again. In addition, plot configuration files can be registered
in the users preferences, so that they will be accessible directly on the Enif *Plot” menu by their name.

In the remaining part of this section, the possibilities of Enif are illustrated by some example plots which
were produced using the standard Winnipeg EMME/2 demonstration data bank.

Fig.22 Asimple plot composed only of a background mapper, a node polygon mapper and some
legend texts. It uses an indexed stylus with linearly interpolated fill colors to produce a zone
map showing the different levels of car ownership in different colors.

Fig.23 This plot is composed of a satellite picture in the background on which are overlaid an
annotation of the rivers (they don’t really fit the satellite image to well...) and a “street”
network layer composed of several link base mappers.

Fig.24 A detailed auto volume plot which shows link and turn volumes.

Fig.25 A typical bandwidth plot showing the auto, transit and auxiliary fransit assignment results as
a multi-layer volume plot.

Fig.26 This plot shows the distribution of vehicle miles traveled by auto speed. An indexed stylus
using a linear color interpolation is used to color the bars by speed from red (very slow)
to dark green (very fast). In order to visualize where the different speeds occur on the
network, a small network plot is superimposed on the top right corner by means of a link
base mapper using the same indexed stylus.

22

[P\m aenerated by Enif 2000-10-09 15:56: 44]

Figure 23: St

reet ne

Zdlle 2

twork

23

Car ownership:

(|
L]
L]
L
—
.

0.50 cars/HH
0.75 cars/HH
1.00 cars/HH
1.25 cars/HH
1.50 cars/HH
1.75 cars/HH
2.00 cars/HH

Figure 24: Link and turning volumes on auto network

Assignment results:

Scenario 2000

i

[Auto volumes [,

I Busvolumes

Walk access

Figure 25: Auto, bus and walk volumes in the CBD

24

Veh. miles Scenario 2000: Vehicle Miles by Link Speed

30000

mph

Figure 26: Integrating a network plot into a diagram

Lists

After having looked at Enif's graphic capabilities to produce network plots and diagrams, it should
not be forgotten that often text-only type output is just as important for doing the day-to-day work in
transportation planning.

This aspect is covered in Enif's concept of network lists. A network list is a user configurable object
which displays textual and numerical information in tabular form for a set of network elements. Its
implementation relies on the same basic concepts that were adlready discussed earlier. attributes,
expressions, selectors, parameters and stylus. Using the “Enif terminology” which we have introduced
in the previous sections, a network list can be described as an object consisting of the following
components:

e Network element type: Defines the type of network elements that can be displayed by this list.

e Element selector: Defines the subset of network elements to be included in the list and, using the
optional iterator expression, the order in which the selected elements appear in the list.

o Column attribute list: An attribute list containing one attribute for each column of the list. Each
of these afttributes is either pointing directly to one of the existing network attributes or is defined
by a column expression to be evaluated “on-the-fly” when a list value is to be displayed.

e Column formatting information: Besides the usual formatting (field width, decimal precision, align-
ment), the value field can optionally be delimited by top, bottom, left and/or right rules, and for
each column the pertinent summary information (min, max, sum, average) can be specified.

e Indexed stylus: Defines the visual appearance of each value field in the list. The stylus index is
an expression of the corresponding network element type which is evaluated for each list value.
The special constant attributes row and column can be used to make the stylus index depend
on the row and/or column index of the displayed value field. Each list value is displayed using
the resulting stylus properties by filing background, writing the value string and, finally, drawing
the activated rules around the value field.

25

e List summaries: At the end of the list, optional minimum, maximum, sum and/or average summao-
ry rows display the requested column summary information.

o Other parameters: Similar as for plots, for each list configuration a name, a description, a window
caption and an icon text can be specified.

e Optional "by-element” selector: A special variant of lists are the so called “by element”-lists.
These are lists which display a set of network elements which is determined by a related network
element, such as e.g. “O-D pairs by origin”, “fransit segments by line” or “turns by intersection”.
In this case, an additional by-element selector specifies the subset and the order of the available
by-elements. The current by-element can be chosen directly from the subset or stepped through
consecutively in forward or backward direction.

The contents of a list can be sent to a printer or punched to a file. Network elements can be marked
on the list and the marked elements can be temporarily hidden or copied to the clipboard for pasting
into other applications.

Figure 27 shows an example of a screen shot of a list containing assignment results for the segments
of a particular tfransit line. Note the use of the stylus to produce a “zebra” list background and to
highlight the volumes of overcrowded segments.

=
File Edit Show Layout

Transit volumes, boardings and alightings
Scenario 2000: copy of 1000

i=tl[SeTl board>0 || alight>0 [only segments with passenger exchange] N

Segment:

582-533
533-532
532-531
531-530
529-528
499-498
498-437
437-436
436-423
423-415
415-414
414-973
1011-1010
1010-1009
1009-1008
1008-1007
1007-1006
1006-1005

o o

(4}
o

B
(=]

™
[}

Ol O O U Ww o O

|25 of 41 transit segments selected /)

Figure 27: Example of a list as it appears on screen

26

Preferences and Initialization File

Configuration settings which pertain to running the Enif program as such (i.e. not related to the con-
figuration of plofts or lists) are handled by a configurable object we refer to as the preferences. The
preferences consist of a set of parameters which are divided into the following groups:

e General parameters containing information about the default data bank, the default startup
plot configuration or the diagnostic log file.

e Layout parameters which define the screen appearance of the Enif program.

e Font parameters which allow the customization of the fonts used by Enif.

e Stylus parameters containing the system defined styli and an open set of user defined styli.

e Network caching parameters which are used to determine which network atfributes are put
intfo the network element’s data buffers and which are read “on-the-fly” from the EMME/2 data
bank when needed.

e Plot related parameters controlling the features of the network plane (e.g. magnifier size and
factor) and defining whether the network uses right hand or left hand traffic.

e Print parameters are used to setup the printing characteristics used for plots and lists.

e Predefined views allow the user to store and recall network windows to easily access a certain
part of the network plane by a logical name.

e Registered plot and list configurations are used to define which plot and list configurations can
be accessed directly from Enif’s "Plot” and "List” menus.

All system defined parameters are organized in a single parameter list. Separate parameter lists are
used to contain each of the following types of user defined parameters: predefined views, registered
plot configurations, registered list configurations and user defined styli. This allows each parameter
type to have its own name space, so that no conflict occurs if e.g. a predefined view uses the same
name as a registered list.

The values of all preference parameters can be saved to an initialization file, so that they can be
used as starting values for subsequent Enif sessions. By default the initialization file enif.ini is used,
but it is also possible to specify an alternate initialization file on the Enif command line using the -i
option.

Implementation

Since EMME/2 is running both on Microsoft Windows based PC and under various flavors of Unix, an
important requirement for Enif is that it, foo, will be running under both types of operating environ-
ments.

This goal is accomplished by programming Enif in the C++ programming language (4) and basing
it on the commercial version of Qt(5), a C++ cross-platform GUI application framework developed
by TrollTech AB in Olso, Norway. Qt not only provides a platform independent method to access the
different windowing systems, but, in addition, it features a very powerful concept of signals and slofs.
The latter are also extensively used in Enif to implement the communication and synchronization
between non-graphic objects, such as e.g. in the grouping mechanism for parameters. Another
important advantage of Qt is the fact that it is distributed as source code. This eliminates the risks of
having Enif depend on “black box” type precompiled components beyond our control.

The generic language used in Enif is English — just as is the case for EMME/2. However, Qt provides an
extensive support for internationalization which makes it possible to use Enif in any other language by
providing the proper translation files. At the moment, a French translation file is available for Enif to
demonstrate this mutli-lingual capability.

27

Conclusions

This article presented a very first look at Enif, a new software aimed at accessing existing EMME/2
data banks by means of a consistent modern graphical user inferface.

The development of Enif is sfill in an early stage. Most of the work done so far was concentrated
on developing a broad and consistent conceptual base and implementing the corresponding basic
tools and mechanisms. Based on this, initial functionalities to provide read-only access to EMME/2
data banks for producing plots and lists have been implemented. This current implementation allows
us to demonstrate that the goals set forth at the beginning of the project can indeed be reached.

A lot of work remains to be done in order to build all the desired functionality into Enif. However,
even the limited functionality which is already implemented today —generating plots and lists— is
on its own a worth while addition to EMME/2. It will help to overcome the drawbacks of EMME/2’s
“old” graphic interface and ease the task of fransforming the computational results of EMME/2 model
runs into high-quality graphical output, both for intferactive work on screen and for presenting results
graphically in reports. For this reason, we intend to release a first version of Enif to all EMME/2 users as
soon as our internal tests has proven the code o be robust enough for general distribution. This version
will essentially contain the functionality presented in this article, i.e. it will allow read-only access to
EMME/2 data banks for generating plots and lists, but it will not include any possibilities to modify
the confents of the data bank. In a second phase, we then plan to gradually add network editing
features to Enif. Building transportation modeling capabilities directly intfo Enif may be considered a
desirable long term goal, but it is much too early now for making any commitments in this direction.

Even with the advent of Enif, the traditional EMME/2 modules will continue to keep their importance,
as they will remain responsible for all tasks associated with the actual modeling of transportation
networks. Thus, Enif should by no means be looked at as a replacement for EMME/2, but as a
—hopefully very useful— complement to EMME/2!

References

(1) Babin A., Florian M., James-Lefébvre L., Spiess H. (1982). EMME/2: Interactive graphic method for
road and fransportation planning. Transportation Research Records 866, 1-9.

(2) INRO Consultants, Inc. (1999). EMME/2 User’s Manual, Release 9.0.

(3) Spiess H. (1984). Contributions & la théorie et aux outils de planification de réseaux de tfrans-
port urbain. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Centre
de recherche sur les transports, Université de Montréal, Publication 382.

(4) Stroustrup B. (1999). The C++ Programming Language. Third Edition. Addison-Wesley, ISBN
0201889544,

(5) TrollTech AB (2000). QT: The Official Documentation. New Riders Publishing, ISBN 1578702097.

EMME/2™ is a registered trademark owned by INRO Consultants, Inc.
Enif™ is a trademark in the process of being registered jointly by Heinz Spiess and INRO Consultants, Inc.
Qt™ is a frademark of Trollfech AS.

28

