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Abstract

In this note we extend the mixed mode logit model for intermediate destination
choice to a similar model in which an explicit capacity is associated with each inter-
mediate destination. This leads to a more realistic approach for modeling parké&ride
trips, since (in contrast to Kiss&Ride trips) the capacity of an intermediate zone is
limited by the parking capacity it offers.

We first show that this model can be expressed as a convex minimization problem.
Then we look at the dual formulation and show that it can be solved efficiently with
a coordinate descent method. A solution algorithm is proposed and its properties
are discussed in detail.

Finally, special attention is given to the practical aspects of applying such a
model for real life projects, and a general implementation of the model in the form
of a macro for the EMME/2 transportation planning package is outlined.
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1 Introduction

In Spiess (1993) the problem of modeling the intermediate destination choice for mixed
mode trips (such as park&ride or kiss&ride) has been discussed as one example of a
distribution model based on an activity chain. It was shown how such models, if based on
a logit distribution, can be implemented efficiently by the use of simple algebraic matrix
multiplications.

The purpose of this note is to focus on the intermediate destination choice for park&ride
trips in particular, i.e. on modeling a logit type choice of a convenient parking lot. After a
brief recapitulation of the model without parking capacities in section 2, the remainder of
this note concentrates on the problem in the presence of explicit capacities at the parking
lots and shows how this problem can be formulated and solved efficiently.

While we will refer to the model discussed here specifically as a “park&ride” model, it
should be noted that the same model is of course also applicable to other kinds of mixed
mode travel which impose some capacity constraints at the intermediate destinations. In
particular, it can be applied to ferry choice models, such as the one used by the Washington
State Ferries (see Dehghani and Gihring, 1995).

2 Parking choice model without capacities

In the absence of any parking capacity constraints a simple logit type parking lot choice
model for park&ride trips is given by the following formula:

e—upk — qu

k/

Ipkg = Gpq peP, ke K and g € Q, (1)

where g, is the number of trips between p and ¢ choosing parking site k, according to
the (properly weighted) mode specific travel impedances uy, for the first leg and vy, for
the second leg of the mixed mode trip. The total park&ride demand for O-D pair pq is
Gpq-

Note that the above formulation does not include an explicit impedance term for the
parking lots (e.g. to model the effects of parking cost). Dropping this term does not cause
any loss of generality of the following development, as it can be thought already included
in one of the leg impedances.

See Spiess (1993) for a more “practical” discussion of this uncapacitated mixed mode
model (as a special case of an activity chain model), including details on its implement-
ation using the convolution module of the EMME/2 software (Spiess 1984; INRO 1996).
A practical application of this model for the Puget Sound Regional Council has been
reported by Blain (1994).
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From a mathematical programming point of view, it is important to note that the
above parking lot choice model is equivalent to the following convex minimization problem:

Min Z Ipkq(108 Gprg — 1+ Upk + Vi) (2)
pkq
subject to
ngkq:qu’ pEP qgEQ. (3)
k

By applying the Kuhn-Tucker optimality conditions (see e.g. Luenberger 1984), it can
be shown that (1) corresponds indeed to the optimal solution of the above optimization
problem.

3 Parking lot choice model with explicit capacities

We now turn our attention to the parking lot choice model in which an explicit capacity
Cy is associated with each parking lot k. To formulate the model, we simply add an
additional constraint to the uncapacitated problem, yielding

Min Z 9pkq(108 Gprg — 1 + Upk + Vkg) (4)
pkq
subject to
ngkq:qua pEP, QEQ, (5)
k
> Gpg < Ck, ke K, (6)
Pq

In order for the above problem to be feasible, it is of course necessary that the total
demand for park&ride trips does not exceed the total amount of parking space available

at the parking lots, i.e.
> Ck 2> Gy (7)
k pq

The less slack there is in the above inequality, the harder the problem will become to
solve. To avoid problems of degeneracy we also assume that C > for all k € K.

By introducing the dual variables a,, for the constraints (5) and f;, > 0 for constraints
(6) and applying again the Kuhn-Tucker optimality conditions, we obtain a model of the
following functional form:

gpque_apq_ﬁk_upk_vkq, peEP kekK, ¢geqQ. (8)
subject to (5) and (6).
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From this, we can obtain the dual problem formulation as follows:

Min " e %%a ~ Bk = ok = Vha 4+ 3" 0 Gy + 3 BC (9)
Pq k

aﬁ pkq
subject to B > 0, k € K.

The Kuhn-Tucker optimality conditions of the dual problem can be written as follows:

Ze_apq - 5’6 — Upk — Vkqg — qu, pE P, q € Qa (10)
k

Se % T T Uk~ Uk < keK. (11)
pq

The optimal values of the dual variables associated with the parking capacity con-
straints, (3;, are the shadow prices associated with the “last” parking space on parking
lot k. They correspond to the additional impedance (or weighted cost) which would need
to be imposed at the parking lot in order to defer enough potential trips to other park-
ing lots to meet the given capacity C,. For parking lots which do not reach capacity
(Xpq 9pkg < Ci) this cost is obviously zero. For a parking lot which is capacity bound,
Ckf; can be used as an indicator of the cost imposed to the system by limiting its capacity
to Ck.

4 Solution Algorithm

As the dual problem (9) does not have any explicit constraints, other than the non-
negativity of (3, it can be solved efficiently by using the successive coordinate descent
method for the dual variables @ and 3. Thus, the optimal solution to the capacitated
parking choice model can, in principle, be found by iteratively solving the equations (10)
and (11) for o and 3.

From a practical point of view, it is preferable not to formulate the solution algorithm
in terms of the dual variables a,, and §;, but instead use the following variable substi-

tution b, = e~ B and Upg = e~ %q. In a similar way, the exponential terms related to
the first and second leg impedances can be evaluated ahead of time, which leads to the
substitutions Uy, = e~ “Pk and Vi, = e~ k2. This way, the algorithm will become easier
to understand and implement, avoiding the evaluation of any exponentials or logarithms
during the execution of the algorithm. In addition, this allows expressing the operations
in terms of simple matrix products (as shown in Spiess 1993) — even though this type of
representation is not used here.

Using the above substitutions, a successive coordinate descent algorithm for the dual
problem (9) can be formulated as follows:
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0. Set i=1and b) =1 for k € K.

1. Compute parking lot choice based on current values of by:

~ G
al, = e peEP qgeQ (12)
. Z b;c_lUkakq
k
and use the results to compute
g}i)kq = a;)qbi:_lUkakq’ k E Ka p E P a’nd q E Q, (13)

2. Check stopping criterion:
If > iy, — Cr < € for all k € K then STOP.
Pq

3. Compute new values of dual multipliers:

e

Z g;kq ’
pq

4. Set 7 := 1+ 1 and return to Step 1.

ke K.

i_ .
b, =min | 1,

From a practical point of view, it is important to note that step 1 of the algorithm
corresponds exactly to solving an uncapacitated parking choice model with a parking lot
impedance ;. Thus, this step can be implemented using the same procedures or macros
which are already available for the problem without capacities.

Even if the above algorithm is terminated before complete convergence is reached, the
solution obtained will always satisfy the conservation of flow constraint (5), whereas some
of the capacity constraints (6) may still be violated by a certain amount. This is typical
for dual based algorithms, and also has the additional advantage that the algorithm will
even converge to a solution if the primal problem is infeasible, i.e. if the total park&ride
demand exceeds the available total parking space (3} Cr < 2 g Gpq)- In the later case,
the algorithm simply converges to a solution in which —loosely speaking— the parking
capacity constraints are violated the least possible.

If they are needed, the shadow prices can be computed as §; = —log bz_l once the
algorithm has terminated. These values (converted back into cost or impedance values
by dividing by the appropriate model coefficients) can be very useful for analyzing the
sensitivity of existing capacities or for deciding where to locate additional parking capacity.
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5 Practical Model Implementation

While the previous sections looked at the posed problem from an abstract and theoretical
point of view, let us now turn our attention to the practical implementation and use of
such a model.

First, it is important to note that the variables gy, used in the mathematical formu-
lation are not easy to handle in real life (there are far too many of them!), nor are they
really pertinent in practice. The problem, as it is posed in practice, is to split the given
park&ride demand matrix Gy, into two intermediate demand matrices gy, and g3,: Gy
for the first leg (usually the auto part) of the trip, and g, for the second leg (usually
the transit part). These intermediate matrices can be obtained as follows by using the
before-mentioned substitutions in (8) and summing over p or ¢:

yzl)k = kapk Zaqukq, p e P, k € K, (14)
q

giq = bpVig D apgUpi, g€Q, ke K. (15)
q

Fortunately, the explicit knowledge of the variable g,, is also not required for carrying
out the solution algorithm, it suffices to know the values for the total parking lot usage
for each lot, which can easily be obtained from either first or second leg demand matrix

asS
o= Ooka =D T =2 Gty keEK. (16)
Prq V4 q

The model and the solution algorithm described in the previous sections have been
implemented in the EMME/2 transportation planning package (Spiess 1984, INRO 1996)
in the form of a macro entitled PARKRIDE. This macro uses the matriz convolution module
of EMME/2 to implement the algebraic matrix multiplications (i.e. the sums) in (12),
(14) and (15) and the matriz calculator module to compute all other (element by element)
operations. For improved efficiency, only the first leg matrix g},k is computed at each
iteration of the algorithm. The second leg matrix giq needs only be computed once, at
the very end of the algorithm. Furthermore, the macro allows the explicit specification
of fixed impedance or disutility term for each parking lot, which e.g. can be used for
representing parking costs.

The macro PARKRIDE is available via Internet on the Web site of the EMME/2 Support
Center at http://www.spiess.ch/emme?2.

In many applications it is not sufficient to only know the intermediate demand matrices
for the first and the second trip leg, but one also needs to know the average first leg (auto)
impedandes 7, and second leg (transit) impedances 7,, for park&ride trips from p to gq.
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These can be obtained by computing the weighted averages as follows:

ngkq“pk a
k pq
Upy = = bk Upk VigUpk, peEP qeqQ, (17)
P ngkq qu ; g o
k

ngkqvkq a
% pq
Tpy = = bk Upk VieqUigs peE P, qge@, (18)
P ngkq qu ; g o
k

The above formulae can also be used for computing any other first or second leg trip
attribute (such as trip length, road tolls, number of transit boardings, transit waiting
time, etc.) by simply replacing u, or v, by the corresponding trip attribute.

In a similar way, average parking cost (or other parking lot related attributes) can be
computed as

ngkqtk
a
t = k = Pq Zkak‘/k tk: pEP’ QEQ, (19)
= ngkq GPQ k g !
k

where t; is the parking cost (or some other attribute) of parking lot k.

6 Conclusions

We have shown that the problem of a logit type intermediate destination choice for mixed
mode trips can indeed be extended to include capacity constraints. The resulting model
is “well behaved” in all important aspects: It has a consistent mathematical formulation,
a solution algorithm which is known to produce an optimal solution and which can be
(and has been) implemented efficiently even for large scale real-life applications.
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