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Abstract

The purpose of the note is to look at the problem of biproportional matrix bal-
ancing when the upper bounds are imposed on the matrix elements. This problem
can be formulated as a convex minimization problem. Using the Kuhn-Tucker op-
timality conditions the functional form of the resulting model is derived. The dual
formulation of the problem is derived and it is shown how it can be solved by a
cyclic coordinate descent method. This leads to the proposal of an efficient solution
algorithm.
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1 Introduction

The purpose of this note is to analyze an extension of the standard biproportional
matrix balancing (Murchland 1977), also referred to as “Fratar” (Lamond and Stew-
ard 1981), “Furness method” (Furness 1970), “maximum entropy transportation model”
or “maximum entropy spacial interaction model” (Florian ...7), and referred to as “two-
dimensional matrix balancing” in the EMME /2 transportation planning package (Spiess
1984, INRO 1996).

As in the standard two-dimensional balancing, a given matrix (containing synthetic fric-
tion factors or “prior” matrix data) is “factored up” to a fit a given set of productions and
attractions. But in addition to satisfying the given productions and attractions, upper
bounds are now imposed on the elements of the resulting matrix. Such bounds can be
thought to represent transport capacities, but they can also be simply used to limit the
growth of individual matrix elements with respect to the prior matrix.

In the next section we briefly introduce at the standard biproportional matrix balancing
model and its optimization formulation as a maximum entropy model. In section 3 the
extended model is formulated and analyzed. In section 4, finally, an efficient solution
algorithm is formulated, which is based on the coordinate descent method applied to the
dual problem.

2 Standard Biproportional Matrix Balancing

The problem of the standard two-dimensional matrix balancing essentially consist in find-
ing appropriate factors a, and b, for each origin p € P and destination ¢ € ) so that when
multiplied to the corresponding rows and columns of the prior matrix G, the marginal
totals of resulting matrix g,, correspond to the given productions O, and attractions D,.
This can be expressed with the following set of equations:

Ipg = ApbyGpq, pq € PQ, (1)
Z 9pq = Op, pe P, (2)
q€Q
Z 9pq = Dy, g€ Q. (3)
peP

It is easy to show that the above problem can also be expressed as the following convex
optimization problem (also referred to as maximum entropy transportation problem):

Min 3 gpq(l0g gpg — log Gpg — 1) (4)

pgEPQ

subject to (2) and (3).
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Defining o, and (3, as the dual variable associated with constraints (10) and (11), we
obtain from the Kuhn-Tucker optimality conditions the following functional form

9pq = e ﬁquqa pq € PQ, (5)
which correspond exactly to (1) when using the following substitutions

a, =e %, pe P, (6)
b, = 6_5‘1, q € Q. (7)

The dual formulation of problem (4) can be written as the following unconstrained op-
timization problem:

Min > Gpem T B+ > 4,0, + Y B,D,. (8)

h PgEPQ pEP 9€Q

The standard biproportional matrix balancing model is know to be always feasible when
>opep Op = Y ycq Dq and Gy > 0 for all pg € PQ.

Problems which have Gp, = 0 for some O-D pairs can also be handled in this framework.
But in this case, the O-D pairs with G, = 0 are not to be considered part of the set PQ
and gp, = 0 is used for these O-D pairs where necessary, e.g. where it appears in a sum
over origins or destinations.

Note, however, that problems with G, = 0 for some O-D pairs are not always feasible.
In this case, there is no easy method to determine the feasibility of a problem a priori,
so that the primal feasibility of a solution found by a dual algorithm always has to be
checked explicitly.

3 Biproportional Matrix Balancing with Upper Bounds

We now turn our attention to an extension of the model defined in the previous section in
which explicit upper bounds U,, are imposed on the resulting matrix elements g,,. Since
imposing upper bounds will have a direct impact on the functional form of the resulting
model, it is not possible to formulate the extended model by simply adding a further
constraint to problem (1)-(11).

However, the minimization problem (4) lends itself very well for an extension by adding
upper bound constraints. This leads to the following extended problem formulation:

Min > gpg(10g gpg — log Gpg — 1) 9)

pgeEPQ
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subject to
> 9q = O, peP, (10)
qeqQ
> 9% =Dy g€Q, (11)
peP
9pg < Upgy pq € PQ. (12)

Using again o, and 3, as the dual variables associated with the production (=refprod)
and attraction constraints (=refattr) and the new dual variables yu,, > 0 for the upper
bound constraints (12), we can state the Kuhn-Tucker optimality conditions for the above
problem as follows:

log gpq —1log Gpg + ap + By + ptpg =0, pq € PQ, (13)
tpg(Upg — Gpg) =0, pq € PQ. (14)

The optimality condition (13) can be rewritten to yield the following functional form for
the resulting model:

Opg = que_ap — By~ Fpq pq € PQ. (15)

By applying the complementary slackness conditions (14) for the dual variable p,, and
distinguishing between the cases 1, = 0 and p,, > 0, (15) becomes

 Gpe= %~ Ba = a,b,Gpy if pipg > 0 .
gpq - U : ( 6)
g otherwise

which can be written even more concisely as
b = Min{Gpee™ % ~ Bq’ Upg} = Min{aybGpq, Upq}, pg € PQ. (17)

Note that the above model formulation does no longer explicitly contain the dual variables
Hopq-

Without loss of generality we can assume that Upg > 0 for all pg € PQ, as matrix elements
gpq can always be forced to zero by setting G, = 0 (and removing the corresponding O-D
pairs from the set PQ), as explained in section 2).

The next step is to formulate the Lagrangian dual for problem (9) which becomes

Min —L(a, 8, p) Z que = Ba = tpg + Z apOp+ Z ByDq+ Z toqUpq (18)
a,pB PgEPQ pEP q€Q PgeEPQ
u>0

Note that, except for the non-negativity of ji,,, the dual problem is essentially uncon-
strained. For this type of problem the a simple method of successive coordinate descent
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is know to converge to the optimal solution (see e.g. Luenberger 1984). Thus, it can be
used to solve the dual problem (18) and find the optimal values of the dual variables. If
the primal problem (9) is feasible, the optimal values of the dual variables «, and £, can
be inserted into (17) to find the optimal solution of the primal problem.

Applying the coordinate descent method to the dual problem (18) means solving cyclically
the first order optimality conditions for the corresponding dual variables. This implies
finding the zeros for the partial derivatives of the dual objective function with respect to
all oy, and 3, and all non-zero ji,,:

aL(O{, 165 lu)/aap = - EqEQ que_ap N ﬂq B /J/pq + Op = Oa p € P: (19)
aL(aa B, M)/aﬂq = - ZpEP que_ap B /Bq ~ Hea 4 Dq =0, q€Q, (20)
OL(a, B, 1) /Oppg =  —Gpge™ X~ Ba = twa 4 Uy =0, for all p1,, > 0.(21)

By observing that (21) is equivalent to (17), it is easy to see that conditions (19) and (21)

can be combined into the simpler production conditions

Z Min{a,b,Gpq, Upg} = Op, p € P, (22)
q€Q

and the conditions (20) and (21) combine into the simpler attraction conditions

> Min{a,byGpq, Upg} = Dy, q€ Q. (23)
peP
Solving (22) for ay,, will simultaneously satisfy the first order conditions (19) for origin p
and (21) for all y,, > 0 related to origin p. In the same manner solving (23) for 3, will
simultaneously satisfy the first order conditions (20) for destination ¢ and (21) for all
Hpq > 0 related to destination gq.

Before turning our attention to the solution algorithm, let us briefly look at the question
of feasibility. The introduction of upper bounds influences the feasibility in a similarly
complex manner as do the zeroes in the matrix Gp,. While of course the conditions

YUy >0,  peP, (24)
q€Q
Y Uy =Dy €@ (25)
peP

are necessary conditions for feasibility, they are by no means sufficient.

4 Solution Algorithm

The proposed solution algorithm can be classified as a coordinate descent method applied
to the dual problem formulation. As it is based on iteratively solving equations (22) and
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(23), it actually does not follow optimize along dual coordinates one by one but always
satisfies the first order conditions simultaneously for all dual variables associated with
either one origin or one destination, (which should result in an improved convergence
compared to a one-by-one coordinate descent method).

Algorithm 1 describes the basic algorithm proposed to solve the biproportional matrix
balancing problem with upper bounds (9). This algorithm assumes that equations of the
type >, min{z f;,u;} = T can be solved for z. How this can be done efficiently is shown
further on in Algorithm 2.

Algorithm 1:
0. Initialization
Set b) =1 for ¢ € Q and set k := 1.

1. Balance origins
For each origin p € P solve the equation

> min{afbi Gy, Upg} = O,
qeQ
for variable af by applying Algorithm 2.

2. Balance destinations
For each destination g € () solve the equation

Z min{a'ﬁbngq; Upe} = Dq
q€Q
for variable bf by applying Algorithm 2.

3. Test stopping criteria
If convergence is reached for the the multipliers a, and b,,
e.g. ||aF — a*7]| + ||bF — b*71|| < €y, then go to step 4,
otherwise set k := k + 1 and return to step 1.
4. Compute primal solution
If the maximum production constraint violation for all p € P is smaller
than some predefined tolerance value, i.e.

> min{afbiGyy, Upl — Op < €2,
q€q

then compute the optimal primal solution
= min{a®b*G,,, Upy }
9pq = min{a,b;Gpg, Upg},

otherwise the primal problem is infeasible. STOP.
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Now let us consider the subproblem how to find the factor z which solves an equation of
the form

Z min{zf;,u;} =T. (26)

This type of problem occurs in step 1 of Algorithm 1 with i = g, f; = b571Gpq, us = Uy,
and in step 3 with ¢ = ¢, f; = a’;qu, u; = Upg. Without loss of generality we can assume
that f; > 0 and u; > 0 for all 4 € I. If there were any elements ¢ with f; = 0 and/or
u; = 0, these can simply be dropped, since they do not influence the solution of (26) at
all.

This type of problem can be solved by first sorting the elements ¢ according to their
u;/ f; ratios and then scanning the elements linearly in this order and checking if the
optimal value z lies in the range between of two consecutive u;/f; ratios. This leads to
the formulation of the following algorithm:

Algorithm 2: (Solve Y, min{z f;, u;} =T)

0. Initialization
Set F=%,fiandU =T

1. Sort elements
Sort the elements ¢ in increasing order of u; : f; ratios.

2. Scan elements
Using the order established in step 1, do for each i:
set F.=F— f,and U :=U — u;,
else
go to step 3.
If this point is reached after having scanned all element, then the problem
is infeasible, STOP.

3. Compute optimal solution
Set the solution to z = U/F and STOP.

So far, the above algorithms have only been implemented in a “quick and dirty” manner
purely for testing purposes. In the few examples tested so far (all based on data taken
from the standard EMME/2 Winnipeg data bank using 154 traffic zones), the algorithm
has been found to converge quite rapidly (4-7 iterations) to the optimal solution. But of
course, further tests are needed.
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5)

Conclusions

The methodology of introducing upper bounds is presented in this note only for the
biproportional matrix balancing. However, it can most likely be applied directly to other
related problems, such as the multi-proportional matrix balancing or Evans and Kirby’s
three-dimensional matrix balancing.

References

[1]

2]
3]

[4]
[5]

[6]
[7]
(8]

Bregman L. (1967) The Relazation Method of Finding the Common Point of Convez Sets and
its Application to the Solution of Problems in Convexr Programming. U.S.S.R. Compu-
tational Math. Mathematical Phys. 7, pp 200-217.

Evens S.P. and Kirby H.R. (1974) A Three-Dimensional Furness Procedure for Calibrating
Gravity Models. Transportation Research, Vol 8, pp 105-122.

Furness K.P. (1970) Time Function Interaction. Traffic Engineering and Control Vol 7,
No 7, pp19-36.

INRO Consultants Inc. (1996), EMME/2 User’s Manual.

Lamond B. and Stewart N.F. (1981) Bregman’s Balancing Method. Transportation Re-
search, Vol 15B, pp 239-248.

Luenberger D.G. (1984) Linear and Nonlinear Programming. Second Edition, Addison-
Wesley.

Murchland J. (1977) The Multi-proportional Problem. Univerity College London, research
note JDM 263.

Spiess H. (1984). Contributions a la théorie et auz outils de planification de réseauz de trans-
port urbain. Ph.D. thesis, Département d’informatique et de recherche opérationnelle,
Centre de recherche sur les transports, Université de Montréal, Publication 382.



